Advertisement

Association study of dietary non-enzymatic antioxidant capacity (NEAC) and colorectal cancer risk in the Spanish Multicase–Control Cancer (MCC-Spain) study

  • Pilar Amiano
  • Esther Molina-Montes
  • Amaia Molinuevo
  • José-María Huerta
  • Dora Romaguera
  • Esther Gracia
  • Vicente Martín
  • Gemma Castaño-Vinyals
  • Beatriz Pérez-Gómez
  • Victor Moreno
  • Jesús Castilla
  • Inés Gómez-Acebo
  • José J. Jiménez-Moleón
  • Guillermo Fernández-Tardón
  • M. Dolores Chirlaque
  • Rocío Capelo
  • Lola Salas
  • Mikel Azpiri
  • Tania Fernández-Villa
  • Xavier Bessa
  • Nuria Aragonés
  • Mireia Obón-Santacana
  • Marcela Guevara
  • Trinidad Dierssen-Sotos
  • Rocío Barrios-Rodríguez
  • Antonio J. Molina de la Torre
  • Ana-Belén Vega
  • Marina Pollán
  • Manolis Kogevinas
  • María José Sánchez
Original Contribution

Abstract

Purpose

Studies attempting to link dietary non-enzymatic antioxidant activity (NEAC) and colorectal cancer (CRC) risk have reported mixed results. We examined this association in the Spanish Multicase–Control Study considering the likely influence of coffee and other dietary factors.

Methods

1718 CRC cases and 3312 matched-controls provided information about diet through a validated 140-item food frequency questionnaire. Dietary NEAC was estimated for three methods [total radical-trapping antioxidant parameters (TRAP), ferric reducing/antioxidant power (FRAP) and TEAC-ABTS] using published values of NEAC content in food, with and without coffee’s NEAC. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated through unconditional logistic regression models adjusted for lifestyle and dietary factors.

Results

Overall dietary intake of NEAC was significantly lower in cases compared to controls and associated with a significantly reduced CRC risk, in both men (ORQ5vsQ1 = 0.67, 95% CI 0.47–0.96 for FRAP) and women (ORQ5vsQ1 = 0.53, 95% CI 0.32–085 for FRAP), in multivariate models with and without the antioxidant contribution from coffee. The effect was similar for all the NEAC methods evaluated and for both colon and rectum. The association between dietary NEAC and CRC risk became non-significant when adjusting for fiber intake. However, intakes of NEAC and fiber were correlated.

Conclusion

This study indicates that intake of an antioxidant-rich plant-based diet, both with and without NEAC from coffee, is associated with decreased CRC risk.

Keywords

Case–control study Diet Antioxidants Colorectal neoplasms Risk factors 

Notes

Funding

This work was supported by the ‘Acción Transversal del Cancer’, approved by the Spanish Ministry Council on the 11th October 2007, by the Instituto de Salud Carlos III, co-founded by FEDER funds—‘a way to build Europe’ (Grants PI08/1770, PI08/0533, PI08/1359, PI09/00773, PI09/01286, PI09/01903, PI09/02078, PI09/01662, PI11/01403, PI11/01889, PI11/00226, PI11/01810, PI11/02213, PI12/00488, PI12/00265, PI12/01270, PI12/00715, PI12/00150, PI14/01219, PI14/00613, PI15/00069, and PI12/00002). Support was also provided by the Fundación Marqués de Valdecilla (Grant API 10/09); the Junta de Castilla y León (Grant LE22A10-2); the Consejería de Salud of the Junta de Andalucía (2009-S0143); the Conselleria de Sanitat of the Generalitat Valenciana (Grant AP 061/10); the Recercaixa (Grant 2010ACUP 00310); the Regional Government of the Basque Country; the Consejería de Sanidad de la Región de Murcia; European Commission Grants FOOD-CT-2006-036224-HIWATE; the Spanish Association Against Cancer (AECC) Scientific Foundation; the Catalan Government DURSI (Grant 2014SGR647); the Fundación Caja de Ahorros de Asturias; the University of Oviedo; Societat Catalana de Digestologia; and COST action BM1206 Eucolongene.

Compliance with ethical standards

Conflict of interests

None.

Supplementary material

394_2018_1773_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 KB)
394_2018_1773_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 21 KB)
394_2018_1773_MOESM3_ESM.docx (16 kb)
Supplementary material 3 (DOCX 15 KB)
394_2018_1773_MOESM4_ESM.docx (18 kb)
Supplementary material 4 (DOCX 18 KB)

References

  1. 1.
    Schwingshackl L, Hoffmann G (2014) Adherence to Mediterranean diet and risk of cancer: a systematic review and meta-analysis of observational studies. Int J Cancer 135:1884–1897.  https://doi.org/10.1002/ijc.28824 CrossRefGoogle Scholar
  2. 2.
    Møller P, Loft S (2006) Dietary antioxidants and beneficial effect on oxidatively damaged DNA. Free Radic Biol Med 41:388–415.  https://doi.org/10.1016/j.freeradbiomed.2006.04.001 CrossRefGoogle Scholar
  3. 3.
    Ahn J, Sinha R, Pei Z et al (2013) Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst 105:1907–1911.  https://doi.org/10.1093/jnci/djt300 CrossRefGoogle Scholar
  4. 4.
    Jung S, Wu K, Giovannucci E et al (2013) Carotenoid intake and risk of colorectal adenomas in a cohort of male health professionals. Cancer Causes Control 24:705–717.  https://doi.org/10.1007/s10552-013-0151-y CrossRefGoogle Scholar
  5. 5.
    Lu M-S, Fang Y-J, Chen Y-M et al (2015) Higher intake of carotenoid is associated with a lower risk of colorectal cancer in Chinese adults: a case–control study. Eur J Nutr 54:619–628.  https://doi.org/10.1007/s00394-014-0743-7 CrossRefGoogle Scholar
  6. 6.
    Leenders M, Leufkens AM, Siersema PD et al (2014) Plasma and dietary carotenoids and vitamins A, C and e and risk of colon and rectal cancer in the European prospective investigation into cancer and nutrition. Int J Cancer 135:2930–2939.  https://doi.org/10.1002/ijc.28938 CrossRefGoogle Scholar
  7. 7.
    Zamora-Ros R, Barupal DK, Rothwell JA et al (2017) Dietary flavonoid intake and colorectal cancer risk in the European prospective investigation into cancer and nutrition (EPIC) cohort. Int J Cancer 140:1836–1844.  https://doi.org/10.1002/ijc.30582 CrossRefGoogle Scholar
  8. 8.
    Serafini M, Del Rio D (2004) Understanding the association between dietary antioxidants, redox status and disease: is the total antioxidant capacity the right tool? Redox Rep 9:145–152.  https://doi.org/10.1179/135100004225004814 CrossRefGoogle Scholar
  9. 9.
    Bartosz G (2010) Non-enzymatic antioxidant capacity assays: limitations of use in biomedicine. Free Radic Res 44:711–720.  https://doi.org/10.3109/10715761003758114 CrossRefGoogle Scholar
  10. 10.
    Carrión-García CJ, Guerra-Hernández EJ, García-Villanova B, Molina-Montes E (2016) Non-enzymatic antioxidant capacity (NEAC) estimated by two different dietary assessment methods and its relationship with NEAC plasma levels. Eur J Nutr.  https://doi.org/10.1007/s00394-016-1201-5 Google Scholar
  11. 11.
    Praud D, Parpinel M, Serafini M et al (2016) Non-enzymatic antioxidant capacity and risk of gastric cancer. Cancer Epidemiol 39:340–345.  https://doi.org/10.1016/j.canep.2015.04.003 CrossRefGoogle Scholar
  12. 12.
    Serafini M, Jakszyn P, Luján-Barroso L et al (2012) Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer 131:544–554.  https://doi.org/10.1002/ijc.27347 CrossRefGoogle Scholar
  13. 13.
    Pantavos A, Ruiter R, Feskens EF et al (2015) Total dietary antioxidant capacity, individual antioxidant intake and breast cancer risk: the Rotterdam study. Int J Cancer 136:2178–2186.  https://doi.org/10.1002/ijc.29249 CrossRefGoogle Scholar
  14. 14.
    Vece MM, Agnoli C, Grioni S et al (2015) Dietary total antioxidant capacity and colorectal cancer in the Italian epic cohort. PLoS ONE 10:1–11.  https://doi.org/10.1371/journal.pone.0142995 CrossRefGoogle Scholar
  15. 15.
    La Vecchia C, Decarli A, Serafini M et al (2013) Dietary total antioxidant capacity and colorectal cancer: a large case–control study in Italy. Int J Cancer 133:1447–1451.  https://doi.org/10.1002/ijc.28133 CrossRefGoogle Scholar
  16. 16.
    Mekary R, Wu K, Giovannucci E et al (2011) Total antioxidant capacity intake and colorectal cancer risk in the Health Professionals Follow-up Study. Cancer Causes Control 21:1315–1321.  https://doi.org/10.1007/s10552-010-9559-9.Total CrossRefGoogle Scholar
  17. 17.
    Lucas AL, Bosetti C, Boffetta P et al (2016) Dietary total antioxidant capacity and pancreatic cancer risk: an Italian case–control study. Br J Cancer 115:102–107CrossRefGoogle Scholar
  18. 18.
    Delgado-Andrade C, Morales FJ (2005) Unraveling the contribution of melanoidins to the antioxidant activity of coffee brews. J Agric Food Chem 53:1403–1407.  https://doi.org/10.1021/jf048500p CrossRefGoogle Scholar
  19. 19.
    Morales FJ, Somoza V, Fogliano V (2012) Physiological relevance of dietary melanoidins. Amino Acids 42:1097–1109.  https://doi.org/10.1007/s00726-010-0774-1 CrossRefGoogle Scholar
  20. 20.
    Haytowitz D, Bhagwat S (2010) USDA database for the oxygen radical absorbance capacity (ORAC) of selected foods, Release 2. US Department of Agriculture, p 10–48. http://www.ars.usda.gov/ba/bhnrc/ndl
  21. 21.
    Pellegrini N, Serafini M, Colombi B et al (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133:2812–2819.  https://doi.org/10.1002/mnfr.200600067 CrossRefGoogle Scholar
  22. 22.
    Carlsen MH, Halvorsen BL, Holte K et al (2010) The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J 9:3.  https://doi.org/10.1186/1475-2891-9-3 CrossRefGoogle Scholar
  23. 23.
    Castano-Vinyals G, Aragones N, Perez-Gomez B et al (2016) Population-based multicase–control study in common tumors in Spain (MCC-Spain): rationale and study design. Gac Sanit 29:308–315.  https://doi.org/10.1016/j.compag.2011.01.019 CrossRefGoogle Scholar
  24. 24.
    García-Closas R, García-Closas M, Kogevinas M et al (2016) Food, nutrient and heterocyclic amine intake and the risk of bladder cancer. Eur J Cancer 43:1731–1740.  https://doi.org/10.1016/j.ejca.2007.05.007 CrossRefGoogle Scholar
  25. 25.
    (CESNID) C for HS in N and D (2008) Tablas de composición de alimentos CESNID. Taules de composició dels aliments CESNIDGoogle Scholar
  26. 26.
    Calvert C, Cade J, Barrett JH, Woodhouse A (1997) Using cross-check questions to address the problem of mis-reporting of specific food groups on Food Frequency Questionnaires. UKWCS Steering Group. United Kingdom Women’s Cohort Study Steering Group. Eur J Clin Nutr 51:708–712CrossRefGoogle Scholar
  27. 27.
    Mendez MA, Popkin BM, Buckland G et al (2011) Alternative methods of accounting for underreporting and overreporting when measuring dietary intake–obesity relations. Am J Epidemiol 173:448–458.  https://doi.org/10.1093/aje/kwq380 CrossRefGoogle Scholar
  28. 28.
    Pellegrini N, Serafini M, Salvatore S et al (2006) Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol Nutr Food Res 50:1030–1038.  https://doi.org/10.1002/mnfr.200600067 CrossRefGoogle Scholar
  29. 29.
    Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S–1228SCrossRefGoogle Scholar
  30. 30.
    Stone CJKC (1985) Additive splines in statistics. Proc Stat Comput Sect Am Stat Assoc 27:45–48Google Scholar
  31. 31.
    R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/
  32. 32.
    Bastide N, Morois S, Cadeau C et al (2016) Heme iron intake, dietary antioxidant capacity, and risk of colorectal adenomas in a large cohort study of French women. Cancer Epidemiol Biomark Prev 25:640–647.  https://doi.org/10.1158/1055-9965.EPI-15-0724 CrossRefGoogle Scholar
  33. 33.
    Michels KB, Welch AA, Luben R et al (2005) Measurement of fruit and vegetable consumption with diet questionnaires and implications for analyses and interpretation. Am J Epidemiol 161(10):987–994CrossRefGoogle Scholar
  34. 34.
    Lettieri-Barbato D, Tomei F, Sancini A et al (2013) Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis. Br J Nutr 109:1544–1556.  https://doi.org/10.1017/S0007114513000263 CrossRefGoogle Scholar
  35. 35.
    Leufkens AM, Van Duijnhoven FJB, Woudt SHS et al (2012) Biomarkers of oxidative stress and risk of developing colorectal cancer: a cohort-nested case–control study in the European Prospective Investigation into Cancer and Nutrition. Am J Epidemiol 175:653–663.  https://doi.org/10.1093/aje/kwr418 CrossRefGoogle Scholar
  36. 36.
    Kouli G-M, Panagiotakos DB, Georgousopoulou EN et al (2018) J-shaped relationship between habitual coffee consumption and 10-year (2002–2012) cardiovascular disease incidence: the ATTICA study. Eur J Nutr 57:1677–1685.  https://doi.org/10.1007/s00394-017-1455-6 CrossRefGoogle Scholar
  37. 37.
    Gunter MJ, Murphy N, Cross AJ et al (2017) Coffee drinking and mortality in 10 European countries: a multinational cohort study. Ann Intern Med 167:236–247CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pilar Amiano
    • 1
    • 2
  • Esther Molina-Montes
    • 3
    • 4
  • Amaia Molinuevo
    • 1
    • 2
  • José-María Huerta
    • 2
    • 5
  • Dora Romaguera
    • 6
    • 7
  • Esther Gracia
    • 6
  • Vicente Martín
    • 2
    • 8
  • Gemma Castaño-Vinyals
    • 2
    • 6
    • 9
    • 10
  • Beatriz Pérez-Gómez
    • 2
    • 11
  • Victor Moreno
    • 2
    • 12
    • 13
  • Jesús Castilla
    • 2
    • 14
  • Inés Gómez-Acebo
    • 2
    • 15
  • José J. Jiménez-Moleón
    • 2
    • 16
  • Guillermo Fernández-Tardón
    • 2
    • 17
  • M. Dolores Chirlaque
    • 2
    • 5
  • Rocío Capelo
    • 18
  • Lola Salas
    • 19
  • Mikel Azpiri
    • 1
  • Tania Fernández-Villa
    • 2
    • 8
  • Xavier Bessa
    • 9
    • 20
  • Nuria Aragonés
    • 2
    • 11
  • Mireia Obón-Santacana
    • 2
    • 12
    • 13
  • Marcela Guevara
    • 2
    • 14
  • Trinidad Dierssen-Sotos
    • 2
    • 15
  • Rocío Barrios-Rodríguez
    • 16
  • Antonio J. Molina de la Torre
    • 2
    • 8
  • Ana-Belén Vega
    • 21
  • Marina Pollán
    • 2
    • 11
  • Manolis Kogevinas
    • 2
    • 6
    • 9
    • 10
  • María José Sánchez
    • 2
    • 22
  1. 1.Health Department, Public Health Division of GipuzkoaBiodonostia Research InstituteSan SebastianSpain
  2. 2.CIBER de Epidemiología y Salud Pública, CIBERESPMadridSpain
  3. 3.Genetic and Molecular Epidemiology GroupSpanish National Cancer Research Center (CNIO)MadridSpain
  4. 4.CIBER Cáncer, CIBERONCMadridSpain
  5. 5.Department of Epidemiology, Murcia Regional Health Council, IMIB-ArrixacaMurcia UniversityMurciaSpain
  6. 6.ISGlobal, Centre for Research in Environmental Epidemiology (CREAL)BarcelonaSpain
  7. 7.Medical Research Institute of Palma (IdISPa)University Hospital Son EspasesPalmaSpain
  8. 8.Grupo de Investigación en Interacciones Gen-Ambiente y Salud, Instituto de BiomedicinaUniversidad de LeónLeónSpain
  9. 9.IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
  10. 10.Universitat Pompeu Fabra (UPF)BarcelonaSpain
  11. 11.Cancer and Environmental Epidemiology Unit, National Center for EpidemiologyInstituto de Salud Carlos IIIMadridSpain
  12. 12.Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO) and IDIBELLHospitalet de LlobregatBarcelonaSpain
  13. 13.Department of Clinical Sciences, Faculty of MedicineUniversity of BarcelonaBarcelonaSpain
  14. 14.Instituto de Salud Pública de Navarra, IdiSNAPamplonaSpain
  15. 15.Universidad de Cantabria – IDIVALSantanderSpain
  16. 16.Department of Preventive Medicine and Public Health, School of Medicine, University of Granada and Instituto de Investigación Biosanitaria de Granada ibs.GRANADAServicio Andaluz de Salud/Universidad de GranadaGranadaSpain
  17. 17.Universitary Institute of OncologyUniversity of OviedoOviedoSpain
  18. 18.Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA)Universidad de HuelvaHuelvaSpain
  19. 19.Dirección General de Salud PúblicaValenciaSpain
  20. 20.Gastroenterology DepartmentHospital del MarBarcelonaSpain
  21. 21.GastroenterologyHospital de ViladecansBarcelonaSpain
  22. 22.Andalusian School of Public Health and Instituto de Investigación Biosanitaria de Granada ibs.GRANADAServicio Andaluz de Salud/Universidad de GranadaGranadaSpain

Personalised recommendations