Modulation of hepatic inflammation and energy-sensing pathways in the rat liver by high-fructose diet and chronic stress

  • Nataša Veličković
  • Ana Teofilović
  • Dragana Ilić
  • Ana Djordjevic
  • Danijela Vojnović Milutinović
  • Snježana Petrović
  • Frederic Preitner
  • Luc Tappy
  • Gordana Matić
Original Contribution

Abstract

Purpose

High-fructose consumption and chronic stress are both associated with metabolic inflammation and insulin resistance. Recently, disturbed activity of energy sensor AMP-activated protein kinase (AMPK) was recognized as mediator between nutrient-induced stress and inflammation. Thus, we analyzed the effects of high-fructose diet, alone or in combination with chronic stress, on glucose homeostasis, inflammation and expression of energy sensing proteins in the rat liver.

Methods

In male Wistar rats exposed to 9-week 20% fructose diet and/or 4-week chronic unpredictable stress we measured plasma and hepatic corticosterone level, indicators of glucose homeostasis and lipid metabolism, hepatic inflammation (pro- and anti-inflammatory cytokine levels, Toll-like receptor 4, NLRP3, activation of NFκB, JNK and ERK pathways) and levels of energy-sensing proteins AMPK, SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α).

Results

High-fructose diet led to glucose intolerance, activation of NFκB and JNK pathways and increased intrahepatic IL-1β, TNFα and inhibitory phosphorylation of insulin receptor substrate 1 on Ser307. It also decreased phospho-AMPK/AMPK ratio and increased SIRT1 expression. Stress alone increased plasma and hepatic corticosterone but did not influence glucose tolerance, nor hepatic inflammatory or energy-sensing proteins. After the combined treatment, hepatic corticosterone was increased, glucose tolerance remained preserved, while hepatic inflammation was partially prevented despite decreased AMPK activity.

Conclusion

High-fructose diet resulted in glucose intolerance, hepatic inflammation, decreased AMPK activity and reduced insulin sensitivity. Chronic stress alone did not exert such effects, but when applied together with high-fructose diet it could partially prevent fructose-induced inflammation, presumably due to increased hepatic glucocorticoids.

Keywords

Inflammation AMP-activated protein kinase Dietary fructose Stress Rat liver 

Notes

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant III41009) and SCOPES JRP (Grant no. IZ73ZO_152331). The authors gratefully appreciate Dr. Đurđica Ignjatović for providing ERK and phospho-ERK antibodies, Dr. Desa Milanović for providing phospho-AMPK antibody and Dr. Ivana Stojanović for providing NLRP3 antibody.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K (2010) Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 299:E685–E694.  https://doi.org/10.1152/ajpendo.00283.2010 CrossRefGoogle Scholar
  2. 2.
    Yau YH, Potenza MN (2013) Stress and eating behaviors. Minerva Endocrinol 38:255–267Google Scholar
  3. 3.
    Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, Lee EW, Burnett MS, Fricke ST, Kvetnansky R, Herzog H, Zukowska Z (2007) Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med 13:803–811.  https://doi.org/10.1038/nm1611 CrossRefGoogle Scholar
  4. 4.
    Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7CrossRefGoogle Scholar
  5. 5.
    Le Marchand-Brustel Y, Gual P, Gremeaux T, Gonzalez T, Barres R, Tanti JF (2003) Fatty acid-induced insulin resistance: role of insulin receptor substrate 1 serine phosphorylation in the retroregulation of insulin signalling. Biochem Soc Trans 31:1152–1156.  https://doi.org/10.1042/BST0311152 CrossRefGoogle Scholar
  6. 6.
    Lee YH, Giraud J, Davis RJ, White MF (2003) c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 278:2896–2902.  https://doi.org/10.1074/jbc.M208359200 CrossRefGoogle Scholar
  7. 7.
    Jiao P, Feng B, Li Y, He Q, Xu H (2013) Hepatic ERK activity plays a role in energy metabolism. Mol Cell Endocrinol 375:157–166.  https://doi.org/10.1016/j.mce.2013.05.021 CrossRefGoogle Scholar
  8. 8.
    Carling D, Thornton C, Woods A, Sanders MJ (2012) AMP-activated protein kinase: new regulation, new roles? Biochem J 445:11–27.  https://doi.org/10.1042/BJ20120546 CrossRefGoogle Scholar
  9. 9.
    Ruderman NB, Carling D, Prentki M, Cacicedo JM (2013) AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 123:2764–2772.  https://doi.org/10.1172/JCI67227 CrossRefGoogle Scholar
  10. 10.
    Lyons CL, Kennedy EB, Roche HM (2016) Metabolic inflammation-differential modulation by dietary constituents. Nutrients.  https://doi.org/10.3390/nu8050247 Google Scholar
  11. 11.
    Ko HJ, Zhang Z, Jung DY, Jun JY, Ma Z, Jones KE, Chan SY, Kim JK (2009) Nutrient stress activates inflammation and reduces glucose metabolism by suppressing AMP-activated protein kinase in the heart. Diabetes 58:2536–2546.  https://doi.org/10.2337/db08-1361 CrossRefGoogle Scholar
  12. 12.
    Zhao C, Zhang Y, Liu H, Li P, Zhang H, Cheng G (2017) Fortunellin protects against high fructose-induced diabetic heart injury in mice by suppressing inflammation and oxidative stress via AMPK/Nrf-2 pathway regulation. Biochem Biophys Res Commun 490:552–559.  https://doi.org/10.1016/j.bbrc.2017.06.076 CrossRefGoogle Scholar
  13. 13.
    Mancini SJ, White AD, Bijland S, Rutherford C, Graham D, Richter EA, Viollet B, Touyz RM, Palmer TM, Salt IP (2017) Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Mol Cell Endocrinol 440:44–56.  https://doi.org/10.1016/j.mce.2016.11.010 CrossRefGoogle Scholar
  14. 14.
    Bess E, Fisslthaler B, Fromel T, Fleming I (2011) Nitric oxide-induced activation of the AMP-activated protein kinase alpha2 subunit attenuates IkappaB kinase activity and inflammatory responses in endothelial cells. PLoS One 6:e20848.  https://doi.org/10.1371/journal.pone.0020848 CrossRefGoogle Scholar
  15. 15.
    Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260.  https://doi.org/10.1146/annurev.immunol.16.1.225 CrossRefGoogle Scholar
  16. 16.
    Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: impact on healthspan and lifespan. J Mol Med 89:667–676.  https://doi.org/10.1007/s00109-011-0748-0 CrossRefGoogle Scholar
  17. 17.
    Yang XD, Tajkhorshid E, Chen LF (2010) Functional interplay between acetylation and methylation of the RelA subunit of NF-kappaB. Mol Cell Biol 30:2170–2180.  https://doi.org/10.1128/MCB.01343-09 CrossRefGoogle Scholar
  18. 18.
    Kim HJ, Park KG, Yoo EK, Kim YH, Kim YN, Kim HS, Kim HT, Park JY, Lee KU, Jang WG, Kim JG, Kim BW, Lee IK (2007) Effects of PGC-1alpha on TNF-alpha-induced MCP-1 and VCAM-1 expression and NF-kappaB activation in human aortic smooth muscle and endothelial cells. Antioxid Redox Signal 9:301–307.  https://doi.org/10.1089/ars.2006.1456 CrossRefGoogle Scholar
  19. 19.
    Pereira CD, Severo M, Neves D, Ascensao A, Magalhaes J, Guimaraes JT, Monteiro R, Martins MJ (2015) Natural mineral-rich water ingestion improves hepatic and fat glucocorticoid-signaling and increases sirtuin 1 in an animal model of metabolic syndrome. Horm Mol Biol Clin Investig 21:149–157.  https://doi.org/10.1515/hmbci-2014-0032 Google Scholar
  20. 20.
    Caton PW, Nayuni NK, Khan NQ, Wood EG, Corder R (2011) Fructose induces gluconeogenesis and lipogenesis through a SIRT1-dependent mechanism. J Endocrinol 208:273–283.  https://doi.org/10.1530/JOE-10-0190 Google Scholar
  21. 21.
    McBurney MW, Clark-Knowles KV, Caron AZ, Gray DA (2013) SIRT1 is a highly networked protein that mediates the adaptation to chronic physiological stress. Genes Cancer 4:125–134.  https://doi.org/10.1177/1947601912474893 CrossRefGoogle Scholar
  22. 22.
    de Sousa Rodrigues ME, Bekhbat M, Houser MC, Chang J, Walker DI, Jones DP, Oller do Nascimento CM, Barnum CJ, Tansey MG (2017) Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain Behav Immun 59:158–172.  https://doi.org/10.1016/j.bbi.2016.08.021 CrossRefGoogle Scholar
  23. 23.
    Kiecolt-Glaser JK (2010) Stress, food, and inflammation: psychoneuroimmunology and nutrition at the cutting edge. Psychosom Med 72:365–369.  https://doi.org/10.1097/PSY.0b013e3181dbf489 CrossRefGoogle Scholar
  24. 24.
    Ventura EE, Davis JN, Goran MI (2011) Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content. Obesity 19:868–874.  https://doi.org/10.1038/oby.2010.255 CrossRefGoogle Scholar
  25. 25.
    Joels M, Karst H, Alfarez D, Heine VM, Qin Y, van Riel E, Verkuyl M, Lucassen PJ, Krugers HJ (2004) Effects of chronic stress on structure and cell function in rat hippocampus and hypothalamus. Stress 7:221–231.  https://doi.org/10.1080/10253890500070005 CrossRefGoogle Scholar
  26. 26.
    Velickovic N, Djordjevic A, Vasiljevic A, Bursac B, Milutinovic DV, Matic G (2013) Tissue-specific regulation of inflammation by macrophage migration inhibitory factor and glucocorticoids in fructose-fed Wistar rats. Br J Nutr 110:456–465.  https://doi.org/10.1017/S0007114512005193 CrossRefGoogle Scholar
  27. 27.
    Vasiljevic A, Velickovic N, Bursac B, Djordjevic A, Milutinovic DV, Nestorovic N, Matic G (2013) Enhanced prereceptor glucocorticoid metabolism and lipogenesis impair insulin signaling in the liver of fructose-fed rats. J Nutr Biochem 24:1790–1797.  https://doi.org/10.1016/j.jnutbio.2013.04.001 CrossRefGoogle Scholar
  28. 28.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509Google Scholar
  29. 29.
    Glaser C, Demmelmair H, Koletzko B (2010) High-throughput analysis of total plasma fatty acid composition with direct in situ transesterification. PLoS One 5:e12045.  https://doi.org/10.1371/journal.pone.0012045 CrossRefGoogle Scholar
  30. 30.
    Petrovic S, Arsic A, Glibetic M, Cikiriz N, Jakovljevic V, Vucic V (2016) The effects of polyphenol-rich chokeberry juice on fatty acid profiles and lipid peroxidation of active handball players: results from a randomized, double-blind, placebo-controlled study. Can J Physiol Pharmacol 94:1058–1063.  https://doi.org/10.1139/cjpp-2015-0575 CrossRefGoogle Scholar
  31. 31.
    Spector T (1978) Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem 86:142–146CrossRefGoogle Scholar
  32. 32.
    Lira FS, Rosa JC, Yamashita AS, Koyama CH, Batista ML Jr, Seelaender M (2009) Endurance training induces depot-specific changes in IL-10/TNF-alpha ratio in rat adipose tissue. Cytokine 45:80–85.  https://doi.org/10.1016/j.cyto.2008.10.018 CrossRefGoogle Scholar
  33. 33.
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462.  https://doi.org/10.1038/35013070 CrossRefGoogle Scholar
  34. 34.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(− Delta Delta C) method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 doiCrossRefGoogle Scholar
  35. 35.
    Havel PJ (2005) Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 63:133–157CrossRefGoogle Scholar
  36. 36.
    Axelsen LN, Lademann JB, Petersen JS, Holstein-Rathlou NH, Ploug T, Prats C, Pedersen HD, Kjolbye AL (2010) Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation. Am J Physiol Regul Integr Comp Physiol 298:R1560–R1570.  https://doi.org/10.1152/ajpregu.00392.2009 CrossRefGoogle Scholar
  37. 37.
    Kawasaki T, Igarashi K, Koeda T, Sugimoto K, Nakagawa K, Hayashi S, Yamaji R, Inui H, Fukusato T, Yamanouchi T (2009) Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis. J Nutr 139:2067–2071.  https://doi.org/10.3945/jn.109.105858 CrossRefGoogle Scholar
  38. 38.
    Lima ML, Leite LH, Gioda CR, Leme FO, Couto CA, Coimbra CC, Leite VH, Ferrari TC (2016) A novel Wistar rat model of obesity-related nonalcoholic fatty liver disease induced by sucrose-rich diet. J Diabetes Res 2016:9127076.  https://doi.org/10.1155/2016/9127076 CrossRefGoogle Scholar
  39. 39.
    Tranchida F, Rakotoniaina Z, Shintu L, Tchiakpe L, Deyris V, Yemloul M, Stocker P, Vidal N, Rimet O, Hiol A, Caldarelli S (2017) Hepatic metabolic effects of Curcuma longa extract supplement in high-fructose and saturated fat fed rats. Sci Rep 7:5880.  https://doi.org/10.1038/s41598-017-06220-0 CrossRefGoogle Scholar
  40. 40.
    Baena M, Sanguesa G, Davalos A, Latasa MJ, Sala-Vila A, Sanchez RM, Roglans N, Laguna JC, Alegret M (2016) Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues. Sci Rep 6:26149.  https://doi.org/10.1038/srep26149 CrossRefGoogle Scholar
  41. 41.
    Softic S, Gupta MK, Wang GX, Fujisaka S, O’Neill BT, Rao TN, Willoughby J, Harbison C, Fitzgerald K, Ilkayeva O, Newgard CB, Cohen DE, Kahn CR (2017) Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest 127:4059–4074.  https://doi.org/10.1172/JCI94585 CrossRefGoogle Scholar
  42. 42.
    Monteiro S, Roque S, de Sa-Calcada D, Sousa N, Correia-Neves M, Cerqueira JJ (2015) An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice. Front Psychiatry 6:6.  https://doi.org/10.3389/fpsyt.2015.00006 CrossRefGoogle Scholar
  43. 43.
    Macedo IC, Medeiros LF, Oliveira C, Oliveira CM, Rozisky JR, Scarabelot VL, Souza A, Silva FR, Santos VS, Cioato SG, Caumo W, Torres IL (2012) Cafeteria diet-induced obesity plus chronic stress alter serum leptin levels. Peptides 38:189–196.  https://doi.org/10.1016/j.peptides.2012.08.007 CrossRefGoogle Scholar
  44. 44.
    Bursac BN, Djordjevic AD, Vasiljevic AD, Milutinovic DD, Velickovic NA, Nestorovic NM, Matic GM (2013) Fructose consumption enhances glucocorticoid action in rat visceral adipose tissue. J Nutr Biochem 24:1166–1172.  https://doi.org/10.1016/j.jnutbio.2012.09.002 CrossRefGoogle Scholar
  45. 45.
    Thompson AK, Fourman S, Packard AE, Egan AE, Ryan KK, Ulrich-Lai YM (2015) Metabolic consequences of chronic intermittent mild stress exposure. Physiol Behav 150:24–30.  https://doi.org/10.1016/j.physbeh.2015.02.038 CrossRefGoogle Scholar
  46. 46.
    Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, Jeandidier N, Maillard E, Marchioni E, Sigrist S, Dal S (2016) High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metab (Lond) 13:15.  https://doi.org/10.1186/s12986-016-0074-1 CrossRefGoogle Scholar
  47. 47.
    Pang J, Xi C, Huang X, Cui J, Gong H, Zhang T (2016) Effects of excess energy intake on glucose and lipid metabolism in C57BL/6 mice. PLoS One 11:e0146675.  https://doi.org/10.1371/journal.pone.0146675 CrossRefGoogle Scholar
  48. 48.
    Packard AE, Ghosal S, Herman JP, Woods SC, Ulrich-Lai YM (2014) Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes. Psychoneuroendocrinology 47:178–188.  https://doi.org/10.1016/j.psyneuen.2014.05.016 CrossRefGoogle Scholar
  49. 49.
    Sanguesa G, Baena M, Hutter N, Montanes JC, Sanchez RM, Roglans N, Laguna JC, Alegret M (2017) The addition of liquid fructose to a western-type diet in LDL-R−/− mice induces liver inflammation and fibrogenesis markers without disrupting insulin receptor signalling after an insulin challenge. Nutrients.  https://doi.org/10.3390/nu9030278 Google Scholar
  50. 50.
    Vasiljevic A, Bursac B, Djordjevic A, Milutinovic DV, Nikolic M, Matic G, Velickovic N (2014) Hepatic inflammation induced by high-fructose diet is associated with altered 11betaHSD1 expression in the liver of Wistar rats. Eur J Nutr 53:1393–1402.  https://doi.org/10.1007/s00394-013-0641-4 CrossRefGoogle Scholar
  51. 51.
    Solinas G, Karin M (2010) JNK1 and IKKbeta: molecular links between obesity and metabolic dysfunction. FASEB J 24:2596–2611.  https://doi.org/10.1096/fj.09-151340 CrossRefGoogle Scholar
  52. 52.
    Roglans N, Vila L, Farre M, Alegret M, Sanchez RM, Vazquez-Carrera M, Laguna JC (2007) Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology 45:778–788.  https://doi.org/10.1002/hep.21499 CrossRefGoogle Scholar
  53. 53.
    Chen Z, Yu R, Xiong Y, Du F, Zhu S (2017) A vicious circle between insulin resistance and inflammation in nonalcoholic fatty liver disease. Lipids Health Dis 16:203.  https://doi.org/10.1186/s12944-017-0572-9 CrossRefGoogle Scholar
  54. 54.
    Gauthier MS, O’Brien EL, Bigornia S, Mott M, Cacicedo JM, Xu XJ, Gokce N, Apovian C, Ruderman N (2011) Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochem Biophys Res Commun 404:382–387.  https://doi.org/10.1016/j.bbrc.2010.11.127 CrossRefGoogle Scholar
  55. 55.
    Liu Q, Gauthier MS, Sun L, Ruderman N, Lodish H (2010) Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio. FASEB J 24:4229–4239.  https://doi.org/10.1096/fj.10-159723 CrossRefGoogle Scholar
  56. 56.
    Chen HL, Tsai TC, Tsai YC, Liao JW, Yen CC, Chen CM (2016) Kefir peptides prevent high-fructose corn syrup-induced non-alcoholic fatty liver disease in a murine model by modulation of inflammation and the JAK2 signaling pathway. Nutr Diabetes 6:e237.  https://doi.org/10.1038/nutd.2016.49 CrossRefGoogle Scholar
  57. 57.
    Andrade J, Quinn J, Becker RZ, Shupnik MA (2013) AMP-activated protein kinase is a key intermediary in GnRH-stimulated LHbeta gene transcription. Mol Endocrinol 27:828–839.  https://doi.org/10.1210/me.2012-1323 CrossRefGoogle Scholar
  58. 58.
    Beauloye C, Marsin AS, Bertrand L, Krause U, Hardie DG, Vanoverschelde JL, Hue L (2001) Insulin antagonizes AMP-activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides. FEBS Lett 505:348–352CrossRefGoogle Scholar
  59. 59.
    Gugliucci A (2016) Fructose surges damage hepatic adenosyl-monophosphate-dependent kinase and lead to increased lipogenesis and hepatic insulin resistance. Med Hypotheses 93:87–92.  https://doi.org/10.1016/j.mehy.2016.05.026 CrossRefGoogle Scholar
  60. 60.
    Cao X, Miner JN, Terkeltaub R, Liu-Bryan R (2016) Fructose amplifies inflammatory potential in human monocytic cells via reduction of AMP-activated protein kinase activity. Arthritis Rheumatol 68(suppl 10):Abstract 2268Google Scholar
  61. 61.
    Lambertz J, Weiskirchen S, Landert S, Weiskirchen R (2017) Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front Immunol 8:1159.  https://doi.org/10.3389/fimmu.2017.01159 CrossRefGoogle Scholar
  62. 62.
    Wagnerberger S, Spruss A, Kanuri G, Volynets V, Stahl C, Bischoff SC, Bergheim I (2012) Toll-like receptors 1–9 are elevated in livers with fructose-induced hepatic steatosis. Br J Nutr 107:1727–1738.  https://doi.org/10.1017/S0007114511004983 CrossRefGoogle Scholar
  63. 63.
    Zhang X, Zhang JH, Chen XY, Hu QH, Wang MX, Jin R, Zhang QY, Wang W, Wang R, Kang LL, Li JS, Li M, Pan Y, Huang JJ, Kong LD (2015) Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxid Redox Signal 22:848–870.  https://doi.org/10.1089/ars.2014.5868 CrossRefGoogle Scholar
  64. 64.
    Bursać B, Djordjevic A, Veličković N, Milutinović D, Petrović S, Teofilović A, Gligorovska L, Preitner F, Tappy L, Matić G (2018) Involvement of glucocorticoid prereceptor metabolism and signaling in rat visceral adipose tissue lipid metabolism after chronic stress combined with high-fructose diet. Mol Cell Endocrinol.  https://doi.org/10.1016/j.mce.2018.04.015 Google Scholar
  65. 65.
    Sharifnia T, Antoun J, Verriere TG, Suarez G, Wattacheril J, Wilson KT, Peek RM Jr, Abumrad NN, Flynn CR (2015) Hepatic TLR4 signaling in obese NAFLD. Am J Physiol Gastrointest Liver Physiol 309:G270–G278.  https://doi.org/10.1152/ajpgi.00304.2014 CrossRefGoogle Scholar
  66. 66.
    Zhang Y, Woodruff M, Zhang Y, Miao J, Hanley G, Stuart C, Zeng X, Prabhakar S, Moorman J, Zhao B, Yin D (2008) Toll-like receptor 4 mediates chronic restraint stress-induced immune suppression. J Neuroimmunol 194:115–122.  https://doi.org/10.1016/j.jneuroim.2007.12.002 CrossRefGoogle Scholar
  67. 67.
    Dittrich A, Khouri C, Sackett SD, Ehlting C, Bohmer O, Albrecht U, Bode JG, Trautwein C, Schaper F (2012) Glucocorticoids increase interleukin-6-dependent gene induction by interfering with the expression of the suppressor of cytokine signaling 3 feedback inhibitor. Hepatology 55:256–266.  https://doi.org/10.1002/hep.24655 CrossRefGoogle Scholar
  68. 68.
    Schmidt-Arras D, Rose-John S (2016) IL-6 pathway in the liver: from physiopathology to therapy. J Hepatol 64:1403–1415.  https://doi.org/10.1016/j.jhep.2016.02.004 CrossRefGoogle Scholar
  69. 69.
    Leclercq IA, Lebrun VA, Starkel P, Horsmans YJ (2007) Intrahepatic insulin resistance in a murine model of steatohepatitis: effect of PPARgamma agonist pioglitazone. Lab Investig J Tech Methods Pathol 87:56–65.  https://doi.org/10.1038/labinvest.3700489 CrossRefGoogle Scholar
  70. 70.
    McKay LI, Cidlowski JA (1999) Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr Rev 20:435–459.  https://doi.org/10.1210/edrv.20.4.0375 Google Scholar
  71. 71.
    Miao H, Zhang Y, Lu Z, Liu Q, Gan L (2012) FOXO1 involvement in insulin resistance-related pro-inflammatory cytokine production in hepatocytes. Inflamm Res 61:349–358.  https://doi.org/10.1007/s00011-011-0417-3 CrossRefGoogle Scholar
  72. 72.
    Koo HY, Miyashita M, Cho BH, Nakamura MT (2009) Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus. Biochem Biophys Res Commun 390:285–289.  https://doi.org/10.1016/j.bbrc.2009.09.109 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nataša Veličković
    • 1
  • Ana Teofilović
    • 1
  • Dragana Ilić
    • 1
  • Ana Djordjevic
    • 1
  • Danijela Vojnović Milutinović
    • 1
  • Snježana Petrović
    • 2
  • Frederic Preitner
    • 3
  • Luc Tappy
    • 4
  • Gordana Matić
    • 1
  1. 1.Department of Biochemistry, Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia
  2. 2.Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical ResearchUniversity of BelgradeBelgradeSerbia
  3. 3.Mouse Metabolic Facility (MEF), Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
  4. 4.Department of PhysiologyUniversity of Lausanne, UNIL-CHUVLausanneSwitzerland

Personalised recommendations