Switching from high-fat diet to foods containing resveratrol as a calorie restriction mimetic changes the architecture of arcuate nucleus to produce more newborn anorexigenic neurons

  • Maryam Safahani
  • Hadi Aligholi
  • Farshid Noorbakhsh
  • Mahmoud Djalali
  • Hamideh Pishva
  • Sayed Mostafa Modarres Mousavi
  • Leila Alizadeh
  • Ali Gorji
  • Fariba Koohdani
Original Contribution



These days, obesity threatens the health for which one of the main interventions is calorie restriction (CR). Due to the difficulty of compliance with this treatment, CR mimetics such as resveratrol (RSV) have been considered. The present study compared the effects of RSV and CR on hypothalamic remodeling in a diet-switching experiment.


C57BL/6 male mice received high-fat diet (HFD) for 4 weeks, subsequently their diet switched to chow diet, HFD + RSV, chow diet + RSV or CR diet for a further 6 weeks. Body weight, fat accumulation, hypothalamic apoptosis and expression of trophic factors as well as generation and fate specification of newborn cells in arcuate nucleus (ARC) were evaluated.


Switching diet to RSV-containing foods leading to weight and fat loss after 6 weeks. In addition, not only a significant reduction in apoptosis but also a considerable increase in production of newborn cells in ARC occurred following consumption of RSV-enriched diets. These were in line with augmentation of hypothalamic ciliary neurotrophic factor and leukemia inhibitory factor expression. Interestingly, RSV-containing diets changed the fate of newborn neurons toward generation of more proopiomelanocortin than neuropeptide Y neurons. The CR had effects similar to those of RSV-containing diets in the all-evaluated aspects besides neurogenesis in ARC.


Although both RSV-containing and CR diets changed the fate of newborn neurons to create an anorexigenic architecture for ARC, newborn neurons were more available after switching to RSV-enriched diets. It can be consider as a promising mechanism for future investigations.


Resveratrol Hypothalamus Obesity Calorie restriction High-fat diet Neurogenesis 



This investigation was supported by Tehran University of Medical Sciences and Health Services (Grant No. 93-01-161-25558), we wish to thank the Shefa Neuroscience Research Center scientists and staff.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflicts of interest.


  1. 1.
    Haslam DW, James WP (2005) Obesity. Lancet 366(9492):1197–1209. CrossRefPubMedGoogle Scholar
  2. 2.
    Ravussin E, Swinburn BA (1992) Pathophysiology of obesity. Lancet 340(8816):404–408CrossRefPubMedGoogle Scholar
  3. 3.
    Fontana L, Klein S (2007) Aging, adiposity, and calorie restriction. JAMA 297(9):986–994CrossRefPubMedGoogle Scholar
  4. 4.
    Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6(4):298–305CrossRefPubMedGoogle Scholar
  5. 5.
    Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295(13):1539–1548CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14(5):612–622CrossRefPubMedGoogle Scholar
  7. 7.
    Szkudelska K, Szkudelski T (2010) Resveratrol, obesity and diabetes. Eur J Pharmacol 635(1):1–8CrossRefPubMedGoogle Scholar
  8. 8.
    Aguirre L, Fernández-Quintela A, Arias N, Portillo MP (2014) Resveratrol: anti-obesity mechanisms of action. Molecules 19(11):18632–18655CrossRefPubMedGoogle Scholar
  9. 9.
    Wang S, Zhu M-J, Du M (2015) Prevention of obesity by dietary resveratrol: how strong is the evidence? Taylor & Francis, LondonGoogle Scholar
  10. 10.
    Rojczyk-Gołębiewska E, Pałasz A, Wiaderkiewicz R (2014) Hypothalamic subependymal niche: a novel site of the adult neurogenesis. Cell Mol Neurobiol 34(5):631–642CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    McNay DE, Briançon N, Kokoeva MV, Maratos-Flier E, Flier JS (2012) Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Investig 122(1):142–152CrossRefPubMedGoogle Scholar
  12. 12.
    Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310(5748):679–683CrossRefPubMedGoogle Scholar
  13. 13.
    Lee DA, Yoo S, Pak T, Salvatierra J, Velarde E, Aja S, Blackshaw S (2014) Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Front Neurosci 8:157CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 15(5):700–702CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lee DA, Blackshaw S (2012) Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci 30(8):615–621CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23(02):270–299CrossRefPubMedGoogle Scholar
  17. 17.
    Gao M, Ma Y, Liu D (2015) High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice. PLoS One 10(3):e0119784CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T (1999) PPARγ mediates high-fat diet–induced adipocyte hypertrophy and insulin resistance. Mol Cell 4(4):597–609CrossRefPubMedGoogle Scholar
  19. 19.
    Tomé-Carneiro J, Larrosa M, González-Sarrías A, Tomas-Barberan A, Teresa Garcia-Conesa F, Carlos Espin M J (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19(34):6064–6093CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127(6):1109–1122CrossRefPubMedGoogle Scholar
  21. 21.
    Kim S, Jin Y, Choi Y, Park T (2011) Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 81(11):1343–1351CrossRefPubMedGoogle Scholar
  22. 22.
    Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22(3):659–661CrossRefPubMedGoogle Scholar
  23. 23.
    Boocock DJ, Faust GE, Patel KR, Schinas AM, Brown VA, Ducharme MP, Booth TD, Crowell JA, Perloff M, Gescher AJ (2007) Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Prev Biomark 16(6):1246–1252CrossRefGoogle Scholar
  24. 24.
    Brown VA, Patel KR, Viskaduraki M, Crowell JA, Perloff M, Booth TD, Vasilinin G, Sen A, Schinas AM, Piccirilli G (2010) Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res 70(22):9003–9110CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Van Itallie TB (1978) Dietary fiber and obesity. Am J Clin Nutr 31(10):S43-S52Google Scholar
  26. 26.
    Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701CrossRefPubMedGoogle Scholar
  27. 27.
    Baile CA, Yang JY, Rayalam S, Hartzell DL, Lai CY, Andersen C, Della-Fera MA (2011) Effect of resveratrol on fat mobilization. Ann N Y Acad Sci 1215(1):40–47CrossRefPubMedGoogle Scholar
  28. 28.
    Rayalam S, Yang JY, Ambati S, Della-Fera MA, Baile CA (2008) Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother Res 22(10):1367–1371CrossRefPubMedGoogle Scholar
  29. 29.
    Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR. Nature 429(6993):771–776CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392CrossRefPubMedGoogle Scholar
  31. 31.
    Gillum MP, Kotas ME, Erion DM, Kursawe R, Chatterjee P, Nead KT, Muise ES, Hsiao JJ, Frederick DW, Yonemitsu S (2011) SirT1 regulates adipose tissue inflammation. Diabetes 60(12):3235–3245CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 3(6):e2264CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Belvindrah R, Lazarini F, Lledo P-M (2009) Postnatal neurogenesis: from neuroblast migration to integration into mature circuits. Rev Neurosci 20(5–6):331–346PubMedGoogle Scholar
  34. 34.
    Millington GW (2007) The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab 4(1):18CrossRefGoogle Scholar
  35. 35.
    Moraes JC, Coope A, Morari J, Cintra DE, Roman EA, Pauli JR, Romanatto T, Carvalheira JB, Oliveira AL, Saad MJ (2009) High-fat diet induces apoptosis of hypothalamic neurons. PLoS One 4(4):e5045CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Buckman LB, Hasty AH, Flaherty DK, Buckman CT, Thompson MM, Matlock BK, Weller K, Ellacott KL (2014) Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav Immunity 35:33–42CrossRefGoogle Scholar
  37. 37.
    Gusman J, Malonne H, Atassi G (2001) A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis 22(8):1111–1117CrossRefPubMedGoogle Scholar
  38. 38.
    Udenigwe CC, Ramprasath VR, Aluko RE, Jones PJ (2008) Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr Rev 66(8):445–454CrossRefPubMedGoogle Scholar
  39. 39.
    Yang J-Y, Della-Fera MA, Rayalam S, Ambati S, Hartzell DL, Park HJ, Baile CA (2008) Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci 82(19):1032–1039CrossRefPubMedGoogle Scholar
  40. 40.
    Bastianetto S, Ménard C, Quirion R (2015) Neuroprotective action of resveratrol. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 1852 (6):1195–1201CrossRefGoogle Scholar
  41. 41.
    Bless E, Reddy T, Acharya KD, Beltz B, Tetel M (2014) Oestradiol and diet modulate energy homeostasis and hypothalamic neurogenesis in the adult female mouse. J Neuroendocrinol 26(11):805–816CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Li J, Tang Y, Cai D (2012) IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol 14(10):999–1012CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gouazé A, Brenachot X, Rigault C, Krezymon A, Rauch C, Nédélec E, Lemoine A, Gascuel J, Bauer S, Pénicaud L (2013) Cerebral cell renewal in adult mice controls the onset of obesity. PLoS One 8(8):e72029CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pierce AA, Xu AW (2010) De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci 30(2):723–730CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kumar V, Pandey A, Jahan S, Shukla RK, Kumar D, Srivastava A, Singh S, Rajpurohit CS, Yadav S, Khanna VK (2016) Differential responses of trans-resveratrol on proliferation of neural progenitor cells and aged rat hippocampal neurogenesis. Sci Rep 6:28142CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Madhyastha S, Sekhar S, Rao G (2013) Resveratrol improves postnatal hippocampal neurogenesis and brain derived neurotrophic factor in prenatally stressed rats. Int J Dev Neurosci 31(7):580–585CrossRefPubMedGoogle Scholar
  47. 47.
    Harada N, Zhao J, Kurihara H, Nakagata N, Okajima K (2011) Resveratrol improves cognitive function in mice by increasing production of insulin-like growth factor-I in the hippocampus. J Nutr Biochem 22(12):1150–1159CrossRefPubMedGoogle Scholar
  48. 48.
    Moriya J, Chen R, Yamakawa J-i, Sasaki K, Ishigaki Y, Takahashi T (2011) Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells. Biol Pharm Bull 34(3):354–359CrossRefPubMedGoogle Scholar
  49. 49.
    McNay DE, Speakman JR (2013) High fat diet causes rebound weight gain. Mol Metab 2(2):103–108CrossRefGoogle Scholar
  50. 50.
    Lambert P, Anderson K, Sleeman M, Wong V, Tan J, Hijarunguru A, Corcoran T, Murray J, Thabet K, Yancopoulos G (2001) Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc Natl Acad Sci 98(8):4652–4657CrossRefGoogle Scholar
  51. 51.
    Vacher C-M, Crepin D, Aubourg A, Couvreur O, Bailleux V, Nicolas V, Férézou J, Gripois D, Gertler A, Taouis M (2008) A putative physiological role of hypothalamic CNTF in the control of energy homeostasis. FEBS Lett 582(27):3832–3838CrossRefPubMedGoogle Scholar
  52. 52.
    Severi I, Perugini J, Mondini E, Smorlesi A, Frontini A, Cinti S, Giordano A (2013) Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus. Front Neurosci 7:263CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yu L-J, Wu M-L, Li H, Chen X-Y, Wang Q, Sun Y, Kong Q-Y, Liu J (2008) Inhibition of STAT3 expression and signaling in resveratrol-differentiated medulloblastoma cells. Neoplasia 10(7):736–744CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Schneider Y, Duranton B, Goss F, Schleiffer R, Seiler N, Raul F (2001) Resveratrol inhibits intestinal tumorigenesis and modulates host-defense-related gene expression in an animal model of human familial adenomatous polyposis. Nutrition cancer 39(1):102–107CrossRefPubMedGoogle Scholar
  55. 55.
    Beretta E, Dhillon H, Kalra PS, Kalra SP (2002) Central LIF gene therapy suppresses food intake, body weight, serum leptin and insulin for extended periods. Peptides 23(5):975–984CrossRefPubMedGoogle Scholar
  56. 56.
    Oshima K, Teo DTW, Senn P, Starlinger V, Heller S (2007) LIF promotes neurogenesis and maintains neural precursors in cell populations derived from spiral ganglion stem cells. BMC Dev Biol 7(1):112CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Rios M (2013) BDNF and the central control of feeding: accidental bystander or essential player? Trends Neurosci 36(2):83–90CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438CrossRefPubMedGoogle Scholar
  59. 59.
    Faigle R, Song H (2013) Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochimica et Biophysica Acta (BBA) Gen Subjects 1830(2):2435–2448CrossRefGoogle Scholar
  60. 60.
    Attari F, Zahmatkesh M, Aligholi H, Mehr SE, Sharifzadeh M, Gorji A, Mokhtari T, Khaksarian M, Hassanzadeh G (2015) Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin. DARU J Pharm Sci 23(1):33CrossRefGoogle Scholar
  61. 61.
    Scapagnini G, Davinelli S, Kaneko T, Koverech G, Koverech A, Calabrese EJ, Calabrese V (2014) Dose response biology of resveratrol in obesity. J Cell Commun Signal 8(4):385–391CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Peltz L, Gomez J, Marquez M, Alencastro F, Atashpanjeh N, Quang T, Bach T, Zhao Y (2012) Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development. PLoS One 7(5):e37162CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maryam Safahani
    • 1
  • Hadi Aligholi
    • 2
    • 3
  • Farshid Noorbakhsh
    • 4
  • Mahmoud Djalali
    • 1
  • Hamideh Pishva
    • 1
  • Sayed Mostafa Modarres Mousavi
    • 3
  • Leila Alizadeh
    • 3
  • Ali Gorji
    • 3
    • 5
    • 6
  • Fariba Koohdani
    • 1
    • 7
  1. 1.Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
  2. 2.Department of Neuroscience, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
  3. 3.Shefa Neuroscience Research CenterKhatam-al-Anbia HospitalTehranIran
  4. 4.Department of Immunology, Faculty of MedicineTehran University of Medical SciencesTehranIran
  5. 5.Department of Neurology, Department of Neurosurgery, Epilepsy Research CenterWestfälische Wilhelms-Universität MünsterMünsterGermany
  6. 6.Department of NeuroscienceMashhad University of Medical SciencesMashhadIran
  7. 7.Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran

Personalised recommendations