Associations between fruit and vegetables intake and abnormal glucose tolerance among women with prior gestational diabetes mellitus

  • Roxanne Mercier
  • Julie Perron
  • S. John Weisnagel
  • Julie Robitaille
Original Contribution

Abstract

Purpose

Women with prior gestational diabetes mellitus (GDM) are at higher risk of type 2 diabetes (T2D). The aim of this study was to investigate the association between fruit and vegetables (FV) intake and abnormal glucose tolerance (AGT) among women with prior GDM.

Methods

A total of 281 women with prior GDM have been recruited a mean of 6 years after their pregnancy in this cohort study. FV intake was obtained with a validated food frequency questionnaire (FFQ). Anthropometric and glycemic components were measured during their clinical visit and women were stratified according to normal glucose tolerance (NGT) or AGT.

Results

A cross-sectional analysis showed that a total of 155 women had NGT and 126 AGT. Women with AGT had significantly lower FV (6.5 ± 0.2) and vegetables servings (3.9 ± 0.2) and tended to have lower fruit servings (2.6 ± 0.2) than women with NGT (7.4 ± 0.2, 4.5 ± 0.2 and 3.0 ± 0.1, respectively) (p = 0.001, p = 0.04 and p = 0.10, respectively, adjusted for age and BMI). FV intake, per one serving increase, was associated with a reduced likelihood of having AGT [OR = 0.88 (0.81–0.97) after adjustment for age and BMI]. Vegetables or fruit intake tended to be associated with a reduced likelihood of having AGT [OR = 0.88 (0.78–1.00) and OR = 0.88 (0.76–1.02), respectively, after adjustment for age and BMI].

Conclusions

Higher intake of FV may be associated with a lower likelihood of AGT among women with prior GDM. Further studies are needed to confirm these results in this high-risk population.

Keywords

Gestational diabetes mellitus Fruit and vegetables Type 2 diabetes Glycemic profile Preventive practices 

Notes

Acknowledgements

We would like to sincerely thank all participants for their participation. This work was supported by the Canadian Institutes for Health Research (CIHR) and by the Fonds de la recherche du Québec en santé (FRQ-S).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approvals were obtained from Laval University and CHU de Québec research ethics committees.

Informed consent

All subjects provided written consent to participate.

References

  1. 1.
    Xiong X, Saunders LD, Wang FL, Demianczuk NN (2001) Gestational diabetes mellitus: prevalence, risk factors, maternal and infant outcomes. Int J Gynaecol Obstet 75(3):221–228CrossRefGoogle Scholar
  2. 2.
    Feig DS, Zinman B, Wang X, Hux JE (2008) Risk of development of diabetes mellitus after diagnosis of gestational diabetes. Cmaj 179(3):229–234.  https://doi.org/10.1503/cmaj.080012 CrossRefGoogle Scholar
  3. 3.
    MacNeill S, Dodds L, Hamilton DC, Armson BA, VandenHof M (2001) Rates and risk factors for recurrence of gestational diabetes. Diabetes Care 24(4):659–662CrossRefGoogle Scholar
  4. 4.
    Canada Diabetes Association Clinical Practise Guidelines Expert Committee (2013) Canadian Diabetes Association 2013 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada. Can J Diabetes 37:S1–S212Google Scholar
  5. 5.
    Canadian Institute for Health Information (2009) Too early, too small: a profile of small babies across Canada. Ottawa, CanadaGoogle Scholar
  6. 6.
    Gunderson EP, Chiang V, Pletcher MJ, Jacobs DR, Quesenberry CP, Sidney S, Lewis CE (2014) History of gestational diabetes mellitus and future risk of atherosclerosis in mid-life: the coronary artery risk development in young adults study. J Am Heart Assoc 3(2):e000490.  https://doi.org/10.1161/jaha.113.000490 CrossRefGoogle Scholar
  7. 7.
    Goueslard K, Cottenet J, Mariet AS, Giroud M, Cottin Y, Petit JM, Quantin C (2016) Early cardiovascular events in women with a history of gestational diabetes mellitus. Cardiovasc Diabetol 15:15.  https://doi.org/10.1186/s12933-016-0338-0 CrossRefGoogle Scholar
  8. 8.
    Kessous R, Shoham-Vardi I, Pariente G, Sherf M, Sheiner E (2013) An association between gestational diabetes mellitus and long-term maternal cardiovascular morbidity. Heart 99(15):1118–1121.  https://doi.org/10.1136/heartjnl-2013-303945 CrossRefGoogle Scholar
  9. 9.
    Shah BR, Retnakaran R, Booth GL (2008) Increased risk of cardiovascular disease in young women following gestational diabetes mellitus. Diabetes Care 31(8):1668–1669.  https://doi.org/10.2337/dc08-0706 CrossRefGoogle Scholar
  10. 10.
    Xu Y, Shen S, Sun L, Yang H, Jin B, Cao X (2014) Metabolic syndrome risk after gestational diabetes: a systematic review and meta-analysis. PLoS One 9(1):e87863.  https://doi.org/10.1371/journal.pone.0087863 CrossRefGoogle Scholar
  11. 11.
    Bellamy L, Casas JP, Hingorani AD, Williams D (2009) Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373(9677):1773–1779.  https://doi.org/10.1016/s0140-6736(09)60731-5 CrossRefGoogle Scholar
  12. 12.
    Kim C, Newton KM, Knopp RH (2002) Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care 25(10):1862–1868CrossRefGoogle Scholar
  13. 13.
    Gingras V, Paradis AM, Tchernof A, Weisnagel SJ, Robitaille J (2012) Relationship between the adoption of preventive practices and the metabolic profile of women with prior gestational diabetes mellitus. Appl Physiol Nutr Metab 37(6):1232–1238.  https://doi.org/10.1139/h2012-114 CrossRefGoogle Scholar
  14. 14.
    Tobias DK, Hu FB, Chavarro J, Rosner B, Mozaffarian D, Zhang C (2012) Healthful dietary patterns and type 2 diabetes mellitus risk among women with a history of gestational diabetes mellitus. Arch Intern Med 172(20):1566–1572.  https://doi.org/10.1001/archinternmed.2012.3747 CrossRefGoogle Scholar
  15. 15.
    Richterich R, Dauwalder H (1971) [Determination of plasma glucose by hexokinase-glucose-6-phosphate dehydrogenase method]. Schweiz Med Wochenschr 101(17):615–618Google Scholar
  16. 16.
    Desbuquois B, Aurbach GD (1971) Use of polyethylene glycol to separate free and antibody-bound peptide hormones in radioimmunoassays. J Clin Endocrinol Metab 33(5):732–738.  https://doi.org/10.1210/jcem-33-5-732 CrossRefGoogle Scholar
  17. 17.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419CrossRefGoogle Scholar
  18. 18.
    Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22(9):1462–1470CrossRefGoogle Scholar
  19. 19.
    Seltzer HS, Allen EW, Herron AL Jr, Brennan MT (1967) Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest 46(3):323–335.  https://doi.org/10.1172/jci105534 CrossRefGoogle Scholar
  20. 20.
    Goulet J, Nadeau G, Lapointe A, Lamarche B, Lemieux S (2004) Validity and reproducibility of an interviewer-administered food frequency questionnaire for healthy French-Canadian men and women. Nutr J 3:13.  https://doi.org/10.1186/1475-2891-3-13 CrossRefGoogle Scholar
  21. 21.
    Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A et al (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35(8):1381–1395.  https://doi.org/10.1249/01.mss.0000078924.61453.fb CrossRefGoogle Scholar
  22. 22.
    Ratner RE, Christophi CA, Metzger BE, Dabelea D, Bennett PH, Pi-Sunyer X, Fowler S, Kahn SE (2008) Prevention of diabetes in women with a history of gestational diabetes: effects of metformin and lifestyle interventions. J Clin Endocrinol Metab 93(12):4774–4779.  https://doi.org/10.1210/jc.2008-0772 CrossRefGoogle Scholar
  23. 23.
    Perez-Ferre N, Del Valle L, Torrejon MJ, Barca I, Calvo MI, Matia P, Rubio MA, Calle-Pascual AL (2015) Diabetes mellitus and abnormal glucose tolerance development after gestational diabetes: a three-year, prospective, randomized, clinical-based, Mediterranean lifestyle interventional study with parallel groups. Clin Nutr 34(4):579–585.  https://doi.org/10.1016/j.clnu.2014.09.005 CrossRefGoogle Scholar
  24. 24.
    Hu G, Tian H, Zhang F, Liu H, Zhang C, Zhang S, Wang L, Liu G, Yu Z et al (2012) Tianjin Gestational Diabetes Mellitus Prevention Program: study design, methods, and 1-year interim report on the feasibility of lifestyle intervention program. Diabetes Res Clin Pract 98(3):508–517.  https://doi.org/10.1016/j.diabres.2012.09.015 CrossRefGoogle Scholar
  25. 25.
    Shyam S, Arshad F, Abdul Ghani R, Wahab NA, Safii NS, Nisak MY, Chinna K, Kamaruddin NA (2013) Low glycaemic index diets improve glucose tolerance and body weight in women with previous history of gestational diabetes: a six months randomized trial. Nutr J 12:68.  https://doi.org/10.1186/1475-2891-12-68 CrossRefGoogle Scholar
  26. 26.
    Wang PY, Fang JC, Gao ZH, Zhang C, Xie SY (2016) Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: a meta-analysis. J Diabetes Investig 7(1):56–69.  https://doi.org/10.1111/jdi.12376 CrossRefGoogle Scholar
  27. 27.
    Li M, Fan Y, Zhang X, Hou W, Tang Z (2014) Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open 4(11):e005497.  https://doi.org/10.1136/bmjopen-2014-005497 CrossRefGoogle Scholar
  28. 28.
    Wu Y, Zhang D, Jiang X, Jiang W (2015) Fruit and vegetable consumption and risk of type 2 diabetes mellitus: a dose-response meta-analysis of prospective cohort studies. Nutr Metab Cardiovasc Dis 25(2):140–147.  https://doi.org/10.1016/j.numecd.2014.10.004 CrossRefGoogle Scholar
  29. 29.
    Hamer M, Chida Y (2007) Intake of fruit, vegetables, and antioxidants and risk of type 2 diabetes: systematic review and meta-analysis. J Hypertens 25(12):2361–2369.  https://doi.org/10.1097/HJH.0b013e3282efc214 CrossRefGoogle Scholar
  30. 30.
    Cormier H, Vigneault J, Garneau V, Tchernof A, Vohl MC, Weisnagel SJ, Robitaille J (2015) An explained variance-based genetic risk score associated with gestational diabetes antecedent and with progression to pre-diabetes and type 2 diabetes: a cohort study. Bjog 122(3):411–419.  https://doi.org/10.1111/1471-0528.12937 CrossRefGoogle Scholar
  31. 31.
    Rayanagoudar G, Hashi AA, Zamora J, Khan KS, Hitman GA, Thangaratinam S (2016) Quantification of the type 2 diabetes risk in women with gestational diabetes: a systematic review and meta-analysis of 95,750 women. Diabetologia 59(7):1403–1411.  https://doi.org/10.1007/s00125-016-3927-2 CrossRefGoogle Scholar
  32. 32.
    Bao W, Yeung E, Tobias DK, Hu FB, Vaag AA, Chavarro JE, Mills JL, Grunnet LG, Bowers K et al (2015) Long-term risk of type 2 diabetes mellitus in relation to BMI and weight change among women with a history of gestational diabetes mellitus: a prospective cohort study. Diabetologia 58(6):1212–1219.  https://doi.org/10.1007/s00125-015-3537-4 CrossRefGoogle Scholar
  33. 33.
    Cho GJ, Park JH, Lee H, Yoo S, Shin SA, Oh MJ (2016) Prepregnancy factors as determinants of the development of diabetes mellitus after first pregnancy. J Clin Endocrinol Metab 101(7):2923–2930.  https://doi.org/10.1210/jc.2015-3761 CrossRefGoogle Scholar
  34. 34.
    Liu H, Zhang C, Zhang S, Wang L, Leng J, Liu D, Fang H, Li W, Yu Z et al (2014) Prepregnancy body mass index and weight change on postpartum diabetes risk among gestational diabetes women. Obesity (Silver Spring) 22(6):1560–1567.  https://doi.org/10.1002/oby.20722 CrossRefGoogle Scholar
  35. 35.
    Tobias DK, Zhang C, Chavarro J, Olsen S, Bao W, Bjerregaard AA, Fung TT, Manson JE, Hu FB (2016) Healthful dietary patterns and long-term weight change among women with a history of gestational diabetes mellitus. Int J Obes (Lond) 40(11):1748–1753.  https://doi.org/10.1038/ijo.2016.156 CrossRefGoogle Scholar
  36. 36.
    Lattimer JM, Haub MD (2010) Effects of dietary fiber and its components on metabolic health. Nutrients 2(12):1266–1289.  https://doi.org/10.3390/nu2121266 CrossRefGoogle Scholar
  37. 37.
    Liu S, Willett WC, Manson JE, Hu FB, Rosner B, Colditz G (2003) Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr 78(5):920–927CrossRefGoogle Scholar
  38. 38.
    Harding AH, Wareham NJ, Bingham SA, Khaw K, Luben R, Welch A, Forouhi NG (2008) Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: the European prospective investigation of cancer–Norfolk prospective study. Arch Intern Med 168(14):1493–1499.  https://doi.org/10.1001/archinte.168.14.1493 CrossRefGoogle Scholar
  39. 39.
    Wanders AJ, van den Borne JJ, de Graaf C, Hulshof T, Jonathan MC, Kristensen M, Mars M, Schols HA, Feskens EJ (2011) Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev 12(9):724–739.  https://doi.org/10.1111/j.1467-789X.2011.00895.x Google Scholar
  40. 40.
    Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ (2010) Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. Bmj 341:c4229.  https://doi.org/10.1136/bmj.c4229 CrossRefGoogle Scholar
  41. 41.
    Cooper AJ, Forouhi NG, Ye Z, Buijsse B, Arriola L, Balkau B, Barricarte A, Beulens JW, Boeing H et al (2012) Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis. Eur J Clin Nutr 66(10):1082–1092.  https://doi.org/10.1038/ejcn.2012.85 CrossRefGoogle Scholar
  42. 42.
    Hozawa A, Jacobs DR Jr, Steffes MW, Gross MD, Steffen LM, Lee DH (2006) Associations of serum carotenoid concentrations with the development of diabetes and with insulin concentration: interaction with smoking: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Epidemiol 163(10):929–937.  https://doi.org/10.1093/aje/kwj136 CrossRefGoogle Scholar
  43. 43.
    Larsson SC, Wolk A (2007) Magnesium intake and risk of type 2 diabetes: a meta-analysis. J Intern Med 262(2):208–214.  https://doi.org/10.1111/j.1365-2796.2007.01840.x CrossRefGoogle Scholar
  44. 44.
    Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H (2007) Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med 167(9):956–965.  https://doi.org/10.1001/archinte.167.9.956 CrossRefGoogle Scholar
  45. 45.
    Dong JY, Xun P, He K, Qin LQ (2011) Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care 34(9):2116–2122.  https://doi.org/10.2337/dc11-0518 CrossRefGoogle Scholar
  46. 46.
    Liu YJ, Zhan J, Liu XL, Wang Y, Ji J, He QQ (2014) Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Clin Nutr 33(1):59–63.  https://doi.org/10.1016/j.clnu.2013.03.011 CrossRefGoogle Scholar
  47. 47.
    Montonen J, Knekt P, Harkanen T, Jarvinen R, Heliovaara M, Aromaa A, Reunanen A (2005) Dietary patterns and the incidence of type 2 diabetes. Am J Epidemiol 161(3):219–227.  https://doi.org/10.1093/aje/kwi039 CrossRefGoogle Scholar
  48. 48.
    Liese AD, Roach AK, Sparks KC, Marquart L, D’Agostino RB Jr, Mayer-Davis EJ (2003) Whole-grain intake and insulin sensitivity: the Insulin Resistance Atherosclerosis Study. Am J Clin Nutr 78(5):965–971CrossRefGoogle Scholar
  49. 49.
    Weickert MO, Pfeiffer AF (2008) Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 138(3):439–442CrossRefGoogle Scholar
  50. 50.
    Weickert MO, Mohlig M, Schofl C, Arafat AM, Otto B, Viehoff H, Koebnick C, Kohl A, Spranger J et al (2006) Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. Diabetes Care 29(4):775–780CrossRefGoogle Scholar
  51. 51.
    Yao B, Fang H, Xu W, Yan Y, Xu H, Liu Y, Mo M, Zhang H, Zhao Y (2014) Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol 29(2):79–88.  https://doi.org/10.1007/s10654-013-9876-x CrossRefGoogle Scholar
  52. 52.
    Wallace IR, McEvoy CT, Hunter SJ, Hamill LL, Ennis CN, Bell PM, Patterson CC, Woodside JV, Young IS et al. (2013) Dose-response effect of fruit and vegetables on insulin resistance in people at high risk of cardiovascular disease. A randomized controlled trial.  https://doi.org/10.2337/dc13-0718
  53. 53.
    Institut National de Santé Publique du Québec (2009) La consommation alimentaire et les apports nutritionnels des adultes québécois. Québec, CanadaGoogle Scholar
  54. 54.
    Black JL, Billette JM (2013) Do Canadians meet Canada’s Food Guide’s recommendations for fruits and vegetables? Appl Physiol Nutr Metab 38(3):234–242.  https://doi.org/10.1139/apnm-2012-0166 CrossRefGoogle Scholar
  55. 55.
    Ekwaru JP, Ohinmaa A, Loehr S, Setayeshgar S, Thanh NX, Veugelers PJ (2017) The economic burden of inadequate consumption of vegetables and fruit in Canada. Public Health Nutr 20(3):515–523.  https://doi.org/10.1017/s1368980016002846 CrossRefGoogle Scholar
  56. 56.
    Jones EJ, Roche CC, Appel SJ (2009) A review of the health beliefs and lifestyle behaviors of women with previous gestational diabetes. J Obstet Gynecol Neonatal Nurs 38(5):516–526.  https://doi.org/10.1111/j.1552-6909.2009.01051.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of NutritionLaval UniversityQuebec CityCanada
  2. 2.Institute of Nutrition and Functional Foods (INAF)Laval UniversityQuebec CityCanada
  3. 3.Endocrinology and Nephrology AxisCHU de Québec Research CenterQuebec CityCanada
  4. 4.Diabetes Research UnitLaval University Medical Research CenterQuebec CityCanada

Personalised recommendations