Advertisement

Epicatechin’s cardiovascular protective effects are mediated via opioid receptors and nitric oxide

  • Kirsty MacRae
  • Kylie Connolly
  • Rebecca Vella
  • Andrew Fenning
Original Contribution

Abstract

Purpose

Cardiovascular disease is the leading cause of mortality globally. Epicatechin has previously been shown to improve vascular responses and possess cardioprotective properties. However, the mechanisms underpinning these cardiotropic outcomes remain unknown. The aim of this study was to further identify epicatechin’s mechanism of action in the cardiovasculature.

Methods

The effects of epicatechin on isolated rat conduit arteries, resistance vessels and cardiac electrophysiology were investigated on resting tension and precontracted vessels and cardiac action potential parameters, both in the presence and in the absence of various antagonists.

Results

At resting tension, epicatechin alone did not affect the vasoreactivity of either conduit or resistance vessels. In noradrenaline pre-contracted thoracic aortic arteries and potassium chloride pre-contracted mesenteric vessels, epicatechin (10−9–10−4 M) induced significant vasorelaxation. The addition of naloxone (10−5 M), NG-nitro-L-arginine methyl ester (10−5M), 4-aminopyridine (5 mM) and verapamil (10−5 M) attenuated epicatechin-mediated vasorelaxation. No change in epicatechin-mediated vasorelaxation was observed with the addition of atropine (10−5 M). Epicatechin significantly improved cardiac electrophysiology by reducing the resting membrane potential, action potential amplitude and force of contraction that was mitigated following the addition of naloxone (10−5 M). Epicatechin significantly decreased the action potential duration at 20, 50 and 90% duration and time to 90% relaxation of force that was unchanged following the addition of naloxone (10−5 M).

Conclusions

These findings suggest epicatechin’s vascular responses and cardioprotective effects are mediated through opioid receptors, nitric oxide, potassium channel and calcium channel activation and highlight the importance of the endothelium/nitric oxide in epicatechin mediated vasorelaxation.

Keywords

Cardiovascular disease Epicatechin Flavonoids Nitric oxide Opioid receptors 

Notes

Acknowledgements

The authors would like to thank Kieran Behan (Rockhampton Base Hospital, Rockhampton, Queensland, Australia) for providing the naloxone used in this study and the Office of Research Services, CQUniversity for providing the funding for this study.

Compliance with ethical standards

Ethical standards

Ethical clearance for this Project was obtained from the Animal Ethics Committee of Central Queensland University (AEC# A14/11-321) and has, therefore, been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Dimmeler S (2011) Cardiovascular disease review series. EMBO Mol Med 3(12):697CrossRefGoogle Scholar
  2. 2.
    Tarride J-E, Lim M, DesMeules M, Luo W, Burke N, O’Reilly D, Bowen J, Goeree R (2009) A review of the cost of cardiovascular disease. Can J Cardiol 25(6):e195–e202CrossRefGoogle Scholar
  3. 3.
    Willerson JT, Ridker PM (2004) Inflammation as a cardiovascular risk factor. Circulation 109(suppl II):II-2–II-10Google Scholar
  4. 4.
    Chrostowska M, Szyndler A, Hoffmann M, Narkiewicz K (2013) Impact of obesity on cardiovascular health. Best Pract Res Clin Endocrinol Metab 27:147–156CrossRefGoogle Scholar
  5. 5.
    Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidative stress. Circ Res 87:840–844CrossRefGoogle Scholar
  6. 6.
    Chen XQ, Hu T, Han Y, Huang W, Yuan HB, Zhang YT, Du Y, Jiang YW (2016) Preventive effects of catechins on cardiovascular disease. Molecules.  https://doi.org/10.3390/molecules21121759 Google Scholar
  7. 7.
    Fraga CGM, Galleano M, Verstraeten SV, Oteiza PI (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Aspects Med 31(6):435–445CrossRefGoogle Scholar
  8. 8.
    Perez-Vizcaino F, Duarte J (2010) Flavonols and cardiovascular disease. Mol Aspects Med 31:478–494CrossRefGoogle Scholar
  9. 9.
    Buijsse B, Feskens EJ, Kok FJ, Kromhout D (2006) Cocoa intake, blood pressure, and cardiovascular mortality: the Zutphen Elderly Study. Arch Intern Med 166(4):411–417Google Scholar
  10. 10.
    Visioli F, Bernaert H, Corti R, Ferri C, Heptinstall S, Molinari E, Poli A, Serafini M, Smit HJ, Vinson JA, Violo F, Paoletti R (2009) Chocolate, lifestyle, and health. Crit Rev Food Sci Nutr 49(4):299–312CrossRefGoogle Scholar
  11. 11.
    Prince PS (2011) A biochemical, electrocardiographic, electrophoretic, histopathological and in vitro study on the protective effects of (−)-epicatechin in isoproterenol induced myocardial infarcted rats. Eur J Pharm 67:95–101CrossRefGoogle Scholar
  12. 12.
    Schroeter H, Heiss C, Balzer J, Kleinbongard P, Kee CL, Hollenberg NK, Sies H, Kwik-Uribe C, Schmitz HH, Kelm M (2006) (−)-epicatechin mediates beneficial effects of flavonol-rich cocoa on vascular function in humans. Proc Natl Acad Sci 103(4):1024–1029CrossRefGoogle Scholar
  13. 13.
    Gómez-Guzmán M, Jiménez R, Sánchez M, Zarzuelo MJ, Galindo P, Quintela AM, López-Sepúlyeda R, Romero M, Tamargo J, Vargas F, Pérez-Vizcaíno F, Duarte J (2012) Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic Biol Med 52(1):70–79CrossRefGoogle Scholar
  14. 14.
    Engler MB, Engler MM, Chen CY, Malloy MJ, Browne A, Chiu EY, Kwak HK, Milbury P, Paul SM, Blumberg J, Mietus-Snyder ML (2004) Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr 23(3):197–204CrossRefGoogle Scholar
  15. 15.
    Igarashi K, Honma K, Yoshinari O, Nanjo F, Hara Y (2007) Effects of dietary catechins on glucose tolerance, blood pressure and oxidative status in Goto-Kakizaki rats. J Nutr Sci Vitaminol (Tokyo) 53(6):496–500CrossRefGoogle Scholar
  16. 16.
    Moore RJ, Jackson KG, Minihane AM (2009) Green tea (Camellia sinensis) catechins and vascular function. Br J Nutr 102:1790–1802CrossRefGoogle Scholar
  17. 17.
    Bhardwaj P, Khanna D (2013) Green tea catechins: defensive role in cardiovascular disorders. Chin J Nat Med 11(4):345–353Google Scholar
  18. 18.
    Fisher ND, Hughes M, Gerhard-Herman M, Hollenberg NK (2003) Flavonol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens 21:2281–2286CrossRefGoogle Scholar
  19. 19.
    Strat KM, Rowley TJ, Smithson AT, Tessem JS, Hulver MW, Liu D, Davy BM, Davy KP, Neilson AP (2016) Mechanisms by which cocoa flavanols improve metabolic syndrome and related disorders. J Nutr Biochem 35:1–21CrossRefGoogle Scholar
  20. 20.
    Duffy SJ, Keaney JF, Holbrook M, Gokce N, Swerdloff PL, Frei B, Vita JA (2001) Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation 104:151–156CrossRefGoogle Scholar
  21. 21.
    Galleano M, Bernatova I, Puzserova A, Balis P, Sestakova N, Pechanova O, Fraga CG (2013) (−)-Epicatechin reduces blood pressure and improves vasorelaxation in spontaneous hypertensive rats by NO-mediated mechanisms. IUBMB Life 65(8):710–715CrossRefGoogle Scholar
  22. 22.
    Aggio A, Grassi D, Onori E, D’Alessandro A, Masedu F, Valenti M, Ferri C (2013) Endothelium/nitric oxide mechanism mediates vasorelaxation and counteracts vasoconstriction induced by low concentration of flavonols. Eur J Nutr 52:263–272CrossRefGoogle Scholar
  23. 23.
    Jiménez R, Duarte J, Perez-Vizcaino (2012) Epicatechin: endothelial function and blood pressure. J Agric Food Chem 60(36):8823–8830CrossRefGoogle Scholar
  24. 24.
    Gómez-Guzmán M, Jiménez R, Sánchez M, Romero M, O’Valle F, Lopez-Sepulveda R, Quintela AM, Galindo P, Zarzuelo MJ, Bailón E, Delpón E, Perez-Vizcaino F, Duarte J (2011) Chronic (−)-epicatechin improves vascular oxidative and inflammatory status but not hypertension in chronic nitric oxide-deficient rats. Br J Nutr 106(9):1337–1348CrossRefGoogle Scholar
  25. 25.
    Chen ZY, Yao XQ, Chan FL, Lau CW, Huang Y (2002) (−)Epicatechin induces and modulates endothelium-dependent relaxation in isolated rat mesenteric artery rings. Acta Pharmacol Sin 23(12):1188–1192Google Scholar
  26. 26.
    Panneerselvam M, Ali SS, Finley JC, Kellerhals SE, Migita MY, Head BP, Patel PM, Roth DM, Patel HH (2013) Epicatechin regulation of mitochondrial structure and function is opioid receptor dependent. Mol Nutr Food Res 57:1007–1014CrossRefGoogle Scholar
  27. 27.
    Panneerselvam M, Tsutsumi YM, Bonds JA, Horikawa YT, Saldana M, Dalton ND, Head BP, Patel PM, Roth DM, Patel HH (2010) Dark chocolate receptors: epicatechin induced cardiac protection is dependent on delta-opioid receptor stimulation. Am J Physiol Heart Circ Physiol 299(5):H1604–H1609CrossRefGoogle Scholar
  28. 28.
    Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y (2012) Current research on opioid receptor function. Curr Drug Targets 13(2):230–246CrossRefGoogle Scholar
  29. 29.
    Headrick JP, Pepe S, Peart JN (2012) Non-analgestic effects of opioids: Cardiovascular effects of opioids and the receptor system. Curr Pharm Des 18(37):6090–6100CrossRefGoogle Scholar
  30. 30.
    Gross GJ, Peart JN (2007) Opioids and myocardial reperfusion injury. Arch Mal Coeur Vaiss 100:231–237Google Scholar
  31. 31.
    Vella R, Pullen C, Coulson F, Fenning A (2014) Resveratrol prevents cardiovascular complications in the SHR/STZ rat by reductions in oxidative stress and inflammation. BioMed Res Int.  https://doi.org/10.1155/2015/918123 Google Scholar
  32. 32.
    Pullen C, Coulson FR, Fenning A (2014) Effects of resveratrol and nebivolol on isolated vascular and cardiac tissues from young rats. Adv Pharmacol Sci.  https://doi.org/10.1155/2014/720386 Google Scholar
  33. 33.
    Chan V, Fenning A, Iyer A, Hoey A, Browne L (2011) Resveratrol improves cardiovascular function in DOCA-salt hypertensive rats. Curr Pharm Biotechnol 12:429:436CrossRefGoogle Scholar
  34. 34.
    Huang Y, Zhang A, Lau CW, Chen ZY (1998) Vasorelaxant effects of purified green tea epicatechin derivatives in rat mesenteric artery. Life Sci 63(4):275–283CrossRefGoogle Scholar
  35. 35.
    Kaneda T, Sasaki N, Urakawa N, Shimizu K (2016) Endothelium-dependent and -independent vasodilator effects of dimethyl sulfoxide in rat aorta. Pharmacology 97(3–4):171–176. (Epub Feb 3)CrossRefGoogle Scholar
  36. 36.
    Calabró V, Piotrkowski B, Fischerman L, Vazquez Prieto MA, Galleano M, Fraga CG (2016) Modifications in nitric oxide and superoxide anion metabolism induced by fructose overload in rat heart are prevented by (−)-epicatechin. Food Funct 7(4):1876–1883CrossRefGoogle Scholar
  37. 37.
    Cremonini E, Bettaieb A, Haj FG, Fraga CG, Oteiza PI (2016) (−)-Epicatechin improves insulin sensitivity in high fat diet-fed mice. Arch Biochem Biophys 599:13–21CrossRefGoogle Scholar
  38. 38.
    Prince PD, Lanzi CR, Toblli JE, Elesgaray R, Oteiza PI, Fraga CG, Galleano M (2016) Dietary (−)-epicatechin mitigates oxidative stress, NO metabolism alterations, and inflammation in renal cortex from fructose-fed rats. Free Radic Biol Med 90:35–46CrossRefGoogle Scholar
  39. 39.
    Litterio MC, Vazquez Prieto MA, Adamo AM, Elesgaray R, Oteiza PI, Galleano M, Fraga CG (2015) (−)-epicatechin reduces blood pressure increase in high-fructose-fed rats: effects on the determinants of nitric oxide bioavailability. J Nutr Biochem 26(7):745–751CrossRefGoogle Scholar
  40. 40.
    Piotrkowski B, Calabró V, Galleano M, Fraga CG (2015) (−)-Epicatechin prevents alterations in the metabolism of superoxide anion and nitric oxide in the hearts of L-NAME-treated rats. Food Funct 6(1):155–161CrossRefGoogle Scholar
  41. 41.
    Grassi D, Desideri G, Necozione S, di Giosia P, Barnabei R, Allegaert L, Berneart H, Ferri C (2015) Cocoa consumption dose-dependently improves flow-mediated dilation and arterial stiffness decreasing blood pressure in healthy individuals. J Hypertens 33(2):294–303CrossRefGoogle Scholar
  42. 42.
    Alvarez-Castro E, Campos-Tomoil M, Orallo F (2004) (−)-Epigallocatechin-3-gallate induces contraction of the rat aorta by a calcium influx-dependent mechanism. Naunyn-Schmiedeberg’s Arch Pharmacol 369:496–506CrossRefGoogle Scholar
  43. 43.
    Sanae F, Miyaichi Y, Kizu H, Hayashi H (2002) Effect of catechins on vascular tone in rat thoracic aorta with endothelium. Life Sci 71:2553–2562CrossRefGoogle Scholar
  44. 44.
    Jiménez R, Duarte J, Perez-Vizcaino F (2012) Epicatechin: endothelial function and blood pressure. J Agric Food Chem 60(36):8823–8830CrossRefGoogle Scholar
  45. 45.
    Moreno-Ulloa A, Romero-Perez D, Villarreal F, Ceballos G, Ramirez-Sanches I (2014) Cell membrane mediated (−)-epicatechin effects on upstream endothelial cell signalling: evidence of a surface receptor. Bioorg Med Chem Lett 24(12):2749–2752CrossRefGoogle Scholar
  46. 46.
    Ramirez-Sanchez I, Maya L, Ceballos G, Villarreal F (2010) (−)-epicatechin activation of endothelial nitric oxide synthase, nitric oxide, and related signalling pathways. Hypertension 55:1398–1405CrossRefGoogle Scholar
  47. 47.
    Williams RJ, Spencer JPE, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36(7):838–849CrossRefGoogle Scholar
  48. 48.
    Pradhan AA, Smith ML, Kieffer BL, Evans CJ (2012) Ligand-directed signalling within the opioid receptor family. BJP 167:960–969CrossRefGoogle Scholar
  49. 49.
    Al-Hasani A, Bruchas MR (2011) Molecular mechanisms of opioid receptor-dependent signalling and behaviour. Anesthesiology 115(6):1363–1381Google Scholar
  50. 50.
    Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signalling. Annu Rev Pharmacol Toxicol 40:389–430CrossRefGoogle Scholar
  51. 51.
    Pugsley MK (2002) The diverse molecular mechanisms responsible for the actions of opioids on the cardiovascular system. Pharmacol Ther 93:51–75CrossRefGoogle Scholar
  52. 52.
    Pradhan AA, Walwyn W, Nozaki C, Filliol D, Erbs E, Matifas A, Evans C, Kieffer B (2010) Ligand-directed trafficking of the δ-opioid receptor in vivo: two paths towards analgesic tolerance. J Neurosci 30:16459–16468CrossRefGoogle Scholar
  53. 53.
    Margas W, Mahmoud S, Ruiz-Velasco V (2010) Muscarinic acetylcholine receptor modulation of mu (µ) opioid receptors in adult rat sphenopalatine ganglion neurons. J Neurophysiol 103(1):172–182CrossRefGoogle Scholar
  54. 54.
    Kearns IR, Morton RA, Bulters DO, Davies CH (2001) Opioid receptor regulation of muscarinic acetylcholine receptor-mediated synaptic responses in the hippocampus. Neuropharmacology 41:565–573CrossRefGoogle Scholar
  55. 55.
    Feuerstein TJ, Gleichauf O, Peckys D, Landwehrmeyer GB, Scheremet R, Jackisch R (1996) Opioid receptor-mediated control of acetylcholine release in human neocortex tissue. Naunyn-Schmiedeberg’s Arch Pharmacol 354:586–592Google Scholar
  56. 56.
    Ong EW, Cahill CM (2014) Molecular perspectives for mu/delta opioid receptor heteromers as distinct, functional receptors. Cell 3:152–179CrossRefGoogle Scholar
  57. 57.
    Novakovic A, Marinko M, Vranic A, Jankovic G, Milojevic P, Stojanovic I, Nenezic D, Ugresic N, Kanjuh V, Yang Q, He QW (2015) Mechanisms underlying the vasorelaxation of human internal mammary artery induced by (−)-epicatechin. Euro J Pharmacol 762:306–312CrossRefGoogle Scholar
  58. 58.
    Huang Y, Chan NW, Lau CW, Yao XQ, Chan FL, Chen ZY (1999) Involvement of endothelium/nitric oxide in vasorelaxation induced by purified green tea (−) epicatechin. Biochim Biophys Acta 1427:322–328CrossRefGoogle Scholar
  59. 59.
    Scholz EP, Zitron E, Katus HA, Karle CA (2010) Cardiovascular ion channels as a molecular target of flavonoids. Cardiovasc Ther 28:e46-e52CrossRefGoogle Scholar
  60. 60.
    Fenning A, Harrison G, Rose’Meyer R, Hoey A, Brown L (2005) L-Arginine attenuates cardiovascular impairment in DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 289(4):H1408-H1416CrossRefGoogle Scholar
  61. 61.
    Kelemen K, Kiesecker C, Zitron E, Bauer A, Scholz E, Bloehs R, Thomas D, Greten J, Remppis A, Schoels W, Katus HA, Karle CA (2007) Green tea flavoniod epigallocatechin-3-gallate (EGCG) inhibits cardiac hERG potassium channels. Biochem Biophys Res Commun 364:429–435CrossRefGoogle Scholar
  62. 62.
    Choi BH, Choi JS, Min DS, Yoon SH, Rhie DJ, Jo YH, Kim MS, Hahn SJ (2001) Effects of (−)-epigallocatechin-3-gallate, the main component of green tea, on the cloned rat brain kv1.5 potassium channels. Biochem Pharmacol 62:527–535CrossRefGoogle Scholar
  63. 63.
    Baek W, Jang B, Lim JH, Kwon T, Lee H, Cho C, Kim D, Shin D, Park J, Lim J, Bae J, Bae J, Yoo SK, Park W, Song D (2005) Inhibitory modulation of atp-sensitive potassium channels by gallate-ester moiety of (−)-epigallocatechin-3-gallate. Biochem Pharmacol 70:1560–1567CrossRefGoogle Scholar
  64. 64.
    Nava E, Lloren S (2016) The paracrine control of vascular motion. A historical perspective. Pharmacol Res 113:125–145CrossRefGoogle Scholar
  65. 65.
    Lovegrove JA, Stainer A, Hobbs DA (2017) Role of flavonoids and nitrates in cardiovascular health. Proc Nutr Soc 19:1–13Google Scholar
  66. 66.
    Pokorney S, Piccini J (2017) Chocolate and prevention of atrial fibrillation: what is bad for the pancreas might be good for the atria? Heart. pii: heartjnl-2016-311026Google Scholar
  67. 67.
    Fung S, Ho C, Choi S, Chung W, Benzie I (2013) Comparison of catechin profiles in human plasma and urine after single dosing and regular intake of green tea (Camellia sinensis). Br J Nutr 109(12):2199–2207CrossRefGoogle Scholar
  68. 68.
    Wiese S, Esatbeyoglu T, Winterhalter P, Kruse H-P, Winkler S, Bub A, Kulling S (2015) Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: a randomized cross-over study in humans. Mol Nutr Food Res 59(4):610–621CrossRefGoogle Scholar
  69. 69.
    Dower J, Geleijnse J, Kroon P, Philo M, Mensink M, Kromhout D, Hollman P (2016) Does epicatechin contribute to the acute vascularfunction effects of dark chocolate? A randomized,crossover study. Mol Nutr Food Res 60:2379–2386CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kirsty MacRae
    • 1
  • Kylie Connolly
    • 1
  • Rebecca Vella
    • 1
  • Andrew Fenning
    • 1
  1. 1.School of Health, Medical and Applied SciencesCQUniversityNorth RockhamptonAustralia

Personalised recommendations