Skip to main content
Log in

Effects of ewe’s milk yogurt (whole and semi-skimmed) and cow’s milk yogurt on inflammation markers and gut microbiota of subjects with borderline-high plasma cholesterol levels: a crossover study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Ewe’s milk yogurt is richer in proteins, minerals and short- and medium-chain fatty acids compared to cow’s milk yogurt. We aimed to evaluate the effects of cow’s milk yogurt (CW, 3.0% fat), semi-skimmed (ES, 2.8% fat) and whole ewe’s milk yogurts (EW, 5.8% fat) on inflammatory markers and gut microbiota in subjects with borderline-high plasma cholesterol.

Methodology

30 adults (16 women) were randomized into a crossover study to consume 250 g/yogurt/day during three 5-week periods (4-week washouts). Plasma insulin, leptin, adhesion molecules, cytokines and gut microbiota composition (qPCR) were analysed. Rates of change were used to assess treatment effects both in the whole group and in subgroups of subjects with different cholesterol/HDL-c ratio (Cho-I group A: the top 6 women and 4 men values; Cho-I group B: remaining subjects).

Results

The yogurts showed no different effects on the inflammatory biomarkers or the microbiota of the whole group. However, ICAM-1 and P-selectin rates of change were lower after EW compared to CW and ES, respectively, in subjects of the Cho-I group A (P = 0.047 and P = 0.020). Women of this group showed lower MCP-1 rates of change after EW compared to ES and CW (P = 0.028, both). Blautia coccoides–Eubacterium rectale decreased in women of the Cho-I group A during EW vs. ES (P = 0.028).

Conclusion

Ewe’s yogurt effects on inflammatory markers and microbiota were not different from those after cow’s yogurt, but the attenuation of some inflammatory biomarkers with ewe’s whole-milk yogurt in subjects with the highest TC/HDL-c deserves further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

LAB:

Lactic acid bacteria

CVR:

Cardiovascular risk

SFA:

Saturated fatty acids

SCFA:

Short-chain fatty acids

MCFA:

Medium-chain fatty acids

LDL:

Low-density lipoprotein LCFA Long-chain fatty acids

BMI:

Body mass index

qPCR:

Quantitative (or real-time) polymerase chain reaction

MCP-1:

Monocyte chemoattractant protein 1

IL:

Interleukin

TNF-α:

Tumor necrosis factor-α

ICAM-1:

Intercellular adhesion molecule-1

VCAM-1:

Vascular cell adhesion molecule-1

TC/HDL-c:

Total cholesterol/HDL-c ratio

TLR:

Toll-like receptors

References

  1. Dietary Guidelines Advisory Committee (2015) Scientific report of the 2015 dietary guidelines advisory committee. http://www.health.gov/dietaryguidelines/2015-scientific-report/pdfs/scientific-report-of-the-2015-dietary-guidelines-advisory-committee.pdf. Accessed Oct 2016

  2. Wang H, Livingston KA, Fox CS, Meigs JB, Jacques PF (2013) Yogurt consumption is associated with better diet quality and metabolic profile in American men and women. Nutr Res 33(1):18–26. https://doi.org/10.1016/j.nutres.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  3. Cormier H, Thifault E, Garneau V, Tremblay A, Drapeau V, Perusse L, Vohl MC (2016) Association between yogurt consumption, dietary patterns, and cardio-metabolic risk factors. Eur J Nutr 55(2):577–587. https://doi.org/10.1007/s00394-015-0878-1

    Article  CAS  PubMed  Google Scholar 

  4. Adolfsson O, Meydani S, Russell R (2004) Yogurt and gut function. Am J Clin Nutr 80:245–256

    Article  CAS  PubMed  Google Scholar 

  5. Fernandez MA, Panahi S, Daniel N, Tremblay A, Marette A (2017) Yogurt and cardiometabolic diseases: a critical review of potential mechanisms. Adv Nutr 8(6):812–829. https://doi.org/10.3945/an.116.013946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dumas A, Lapointe A, Dugrenier M, Provencher V, Lamarche B, Desroches S (2017) A systematic review of the effect of yogurt consumption on chronic diseases risk markers in adults. Eur J Nutr 56:1375–1392. https://doi.org/10.1007/s00394-016-1341-7

    Article  CAS  PubMed  Google Scholar 

  7. Sadrzadeh-Yeganeh H, Elmadfa I, Djazayery A, Jalali M, Heshmat R, Chamary M (2010) The effects of probiotic and conventional yoghurt on lipid profile in women. Br J Nutr 103:1778–1783

    Article  CAS  PubMed  Google Scholar 

  8. Labonté ME, Couture P, Richard C, Desroche S, Lamarche B (2013) Impact of dairy products on biomarkers of inflammation: a systematic review of randomized controlled nutritional intervention studies in overweight and obese adults. Am J Clin Nutr 97:706–717

    Article  CAS  PubMed  Google Scholar 

  9. Tamime AY, Robinson RK (1999) Background to manufacturing practice. In: Tamime AY, Robinson RK (eds) Yoghurt science and technology, 2nd edn. CRC Press, Woodhead Publishing Limited, Cambridge, pp 32–33

    Google Scholar 

  10. Jandal JM (1996) Comparative aspects of goat and sheep milk. Small Ruminant Res 22:177–185

    Article  Google Scholar 

  11. Katcher HI, Hill AM, Lanford JL, Yoo JS, Kris-Etherton PM (2009) Lifestyle approaches and dietary strategies to lower LDL-cholesterol and triglycerides and raise HDL-cholesterol. Endocrinol Metab Clin North Am 38(1):45–78. https://doi.org/10.1016/j.ecl.2008.11.01. (PubMed PMID:19217512)

    Article  CAS  PubMed  Google Scholar 

  12. Tall AR, Yvan-Charvet L (2015) Cholesterol, inflammation and innate immunity. Nat Rev Immunol 15(2):104–116. https://doi.org/10.1038/nri3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  CAS  PubMed  Google Scholar 

  14. Calder PC, Ahluwalia N, Albers R, Bosco N, Bourdet-Sicard R, Haller D, Holgate ST, Jönsson LS, Latulippe ME, Marcos A et al (2013) A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr 109(Suppl 1):S1-S34. https://doi.org/10.1017/S0007114512005119

    Article  Google Scholar 

  15. Hogas S, Bilha SC, Branisteanu D, Hogas M, Gaipov A, Kanbay M, Covic A (2017) Potential novel biomarkers of cardiovascular dysfunction and disease: cardiotrophin-1, adipokines and galectin-3. Arch Med Sci 13(4):897–913. https://doi.org/10.5114/aoms.2016.58664

    Article  CAS  PubMed  Google Scholar 

  16. González-Gil EM, Cadenas-Sanchez C, Santabárbara J, Bueno-Lozano G, Iglesia I, González-Gross M, Molnar D, Gottrand F, De Henauw S, Kafatos A et al; HELENA study group (2018) Inflammation in metabolically healthy and metabolically abnormal adolescents: The HELENA study. Nutr Metab Cardiovasc Dis 28(1):77–83. https://doi.org/10.1016/j.numecd.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  17. Sonnenburg J, Bäckhed F (2016) Diet–microbiota interactions as moderators of human metabolism. Nature 535(7610):56–64. https://doi.org/10.1038/nature18846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. German JB, Dillard CJ (2004) Saturated fats: what dietary intake? Am J Clin Nutr 80(3):550–559

    Article  CAS  PubMed  Google Scholar 

  19. Huth P, Fulgoni V, Jandacek RJ, Jones PJ, St-Onge MP, Senanayake V (2010) Bioactivity and emerging role of short and medium chain fatty acids. Lipid Technol 22(12):266–269

    Article  CAS  Google Scholar 

  20. Azadbakht L, Mirmiran P, Esmaillzadeh A, Azizi F (2005) Dairy consumption is inversely associated with the prevalence of the metabolic syndrome in Tehranian adults. Am J Clin Nutr 82:523–530

    Article  CAS  PubMed  Google Scholar 

  21. Uyeno Y, Sekiguchi Y, Kamagata Y (2008) Impact of consumption of probiotic lactobacilli-containing yogurt on microbial composition in human feces. Int J Food Microbiol 122(1–2):16–22

    Article  CAS  PubMed  Google Scholar 

  22. García-Albiach R, Pozuelo de Felipe M, Angulo S, Morosini MI, Bravo D, Baquero F, del Campo R (2008) Molecular analysis of yogurt containing Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in human intestinal microbiota. Am J Clin Nutr 87:91–96

    Article  PubMed  Google Scholar 

  23. Lemieux I, Lamarche B, Couillard C, Pascot A, Cantin B, Bergeron J, Dagenais GR, Després JP (2001) Total cholesterol/HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: the Quebec Cardiovascular Study. Arch Intern Med 161(22):2685–2892

    Article  CAS  PubMed  Google Scholar 

  24. Klein A, Friedrich U, Vogelsang H, Jahreis G (2008) Lactobacillus acidophilus 74–2 and Bifidobacterium animalis subsp lactis DGCC 420 modulate unspecific cellular immune response in healthy adults. Eur J Clin Nutr 62(5):584–593

    Article  CAS  PubMed  Google Scholar 

  25. Worthley DL, Le Leu RK, Whitehall VL, Conlon M, Christophersen C, Belobrajdic D, Mallitt KA, Hu Y, Irahara N, Ogino S et al (2009) A human, double-blind, placebo-controlled, crossover trial of prebiotic, probiotic, and synbiotic supplementation: effects on luminal, inflammatory, epigenetic, and epithelial biomarkers of colorectal cancer. Am J Clin Nutr 90(3):578–586. https://doi.org/10.3945/ajcn.2009.28106

    Article  CAS  PubMed  Google Scholar 

  26. Olmedilla-Alonso B, Nova E, García-González N, Martín-Diana AB, Fontecha J, Delgado D, Gredilla AE, Bueno F, Asensio-Vegas C (2017) Effect of ewe’s (semi-skimmed and whole) and cow’s milk-yogurt consumption on the lipid profile of control subjects. A crossover study. Food Nutr Res 61(1):1391669. https://doi.org/10.1080/16546628.2017.1391669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R (2004) Use of 16S rRna gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70(12):7220–7228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gueimonde M, Tölkkö S, Korpimäki T, Salminen S (2004) New real-time quantitative PCR procedure for quantification of bifidobacteria in human fecal samples. Appl Environ Microbiol 70(7):4165–4169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bartosch S, Fite A, Macfarlane GT, McMurdo ME (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70(6):3575–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heilig HGHJ., Zoetendal EG, Vaughan EE, Marteau P, Akkermans ADL, de Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114e23

    Article  CAS  Google Scholar 

  31. Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A (2004) Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 97(6):1166–1177

    Article  CAS  PubMed  Google Scholar 

  32. Savard P, Lamarche B, Paradis ME, Thiboutot H, Laurin É, Roy D (2011) Impact of Bifidobacterium animalis subsp. lactis BB-12 and, Lactobacillus acidophilus LA-5-containing yoghurt, on fecal bacterial counts of healthy adults. Int J Food Microbiol 149(1):50–57

    Article  CAS  PubMed  Google Scholar 

  33. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F (2015) Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 22(4):658–668. https://doi.org/10.1016/j.cmet.2015.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harvey KA, Walker CL, Pavlina TM, Xu Z, Zaloga GP, Siddiqui RA (2010) Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth. Clin Nutr 29(4):492–500

    Article  CAS  PubMed  Google Scholar 

  35. St-Onge MP, Bosarge A, Goree L, Darnell B (2008) Medium chain triglyceride oil consumption as part of a weight loss diet does Not Lead to an Adverse Metabolic Profile When Compared to Olive Oil. J Am Coll Nutr 27(5):547–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsuji H, Kasai M, Takeuchi H, Nakamura M, Okazaki M, Kondo K (2001) Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women. J Nutr 131(11):2853–2859

    Article  CAS  PubMed  Google Scholar 

  37. Zhou S, Wang Y, Jacoby JJ, Jiang Y, Zhang Y, Yu LL (2017) Effects of medium- and long-chain triacylglycerols on lipid metabolism and gut microbiota composition in C57BL/6J Mice. J Agric Food Chem 65(31):6599–6607. https://doi.org/10.1021/acs.jafc.7b01803

    Article  CAS  PubMed  Google Scholar 

  38. Aoyama T, Nosaka N, Kasai M (2007) Research on the nutritional characteristics of medium-chain fatty acids. J Med Invest 54(3–4):385–388

    Article  PubMed  Google Scholar 

  39. Papadimitriou C, Vafopoulou-Mastrojiannaki A, Vieira Silva S, Gomes AM, Malcata FX, Alichanidis E (2007) Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin I-converting enzyme (ACE)-inhibitory activity. Food Chem 105(2):647–656

    Article  CAS  Google Scholar 

  40. Shena W, Gaskinsb HR, McIntosha M (2014) Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. J Nutr Biochem 25:270–280

    Article  CAS  Google Scholar 

  41. de Wit N, Derrien M, Bosch-Vermeulen H, Oosterink E, Keshtkar S, Duval C, de Vogel-van den Bosch J, Kleerebezem M, Müller M, van der Meer R (2012) Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol Gastrointest Liver Physiol 303(5):G589-G599. https://doi.org/10.1152/ajpgi.00488.2011

    Article  CAS  Google Scholar 

  42. Patterson E, O’ Doherty RM, Murphy EF, Wall R, O’ Sullivan O, Nilaweera K, Fitzgerald GF, Cotter PD, Ross RP, Stanton C (2014) Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. Brit J Nutr 20:1–13

    Google Scholar 

  43. Gérard P (2013) Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 3(1):14–24. https://doi.org/10.3390/pathogens3010014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, Antonopoulos DA, Jabri B, Chang EB (2012) Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10–/– mice. Nature 487:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Forbes JD, Van Domselaar G, Bernstein CN (2016) The gut microbiota in immune-mediated inflammatory diseases. Front Microbiol 7:1081. https://doi.org/10.3389/fmicb.2016.01081

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yamashiro K, Tanaka R, Urabe T, Ueno Y, Yamashiro Y, Nomoto K, Takahashi T, Tsuji H, Asahara T, Hattori N (2017) Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS One 12(2):e0171521. https://doi.org/10.1371/journal.pone

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JA, Brandsma E, Marczynska J, Imhann F, Weersma RK et al. (2015) The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res 117(9):817–824. https://doi.org/10.1161/CIRCRESAHA.115.306807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was financed by MINECO Agro Technological Institute (ITACyL) and INIA (National Institute for Agricultural and Food Research and Technology) through the project RTA2012-00113-CO2-01 and co-financed through the European Regional Development Fund. It also received complementary funding from Quesos Artesanos de Letur S.A. Natalia García-González is the recipient of predoctoral contract FPI-INIA-19-2014, financed by INIA and the European Social Fund. The authors would like to thank Christian Hansen (Isabel López-Viñas) for kindly supplying the starter cultures and Irene Santiago for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Nova.

Ethics declarations

Ethics approval and consent to participate

The current project was approved by the Hospital Universitario Puerta de Hierro-Majadahonda, (Madrid, Spain) (Record no 305, dated 9 December 2014) and the Bioethics Committee of the Spanish Scientific Research Council (CSIC). The study was carried out according to the Declaration of Helsinki (59ª General Assembly, Seúl, Corea, October 2008) and the Good Clinical Practices. Signed informed consent was obtained from all volunteers.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redondo, N., García-González, N., Diaz-Prieto, L.E. et al. Effects of ewe’s milk yogurt (whole and semi-skimmed) and cow’s milk yogurt on inflammation markers and gut microbiota of subjects with borderline-high plasma cholesterol levels: a crossover study. Eur J Nutr 58, 1113–1124 (2019). https://doi.org/10.1007/s00394-018-1626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1626-0

Keywords

Navigation