Polyphenol-rich curry made with mixed spices and vegetables benefits glucose homeostasis in Chinese males (Polyspice Study): a dose–response randomized controlled crossover trial

  • Sumanto Haldar
  • Siok Ching Chia
  • Sze Han Lee
  • Joseph Lim
  • Melvin Khee-Shing Leow
  • Eric Chun Yong Chan
  • Christiani Jeyakumar Henry
Original Contribution



To investigate acute effects of two doses of a polyphenol-rich curry made with seven different spices and four base vegetables, eaten with white rice, on 24 h glucose response, postprandial insulinemia, triglyceridemia and 24 h urinary total polyphenol excretion (TPE).


Randomized, controlled, dose–response crossover trial in healthy, Chinese men [n = 20, mean ± standard deviation (SD) age 23.7 ± 2.30 years, BMI 23.0 ± 2.31 kg/m2] who consumed test meals matched for calories, macronutrients and total vegetables content, consisting either Dose 0 Control (D0C) or Dose 1 Curry (D1C) or Dose 2 Curry (D2C) meal. 24 h glucose concentration was measured using continuous glucose monitoring (CGM), together with postprandial plasma insulin and triglyceride for up to 7 h. Total polyphenol content (TPC) of test meals and urinary TPE were measured using the Folin–Ciocalteu assay.


TPC for D0C, D1C and D2C were 130 ± 18, 556 ± 19.7 and 1113 ± 211.6 mg gallic acid equivalent (GAE) per portion served, respectively (p < 0.0001). Compared with D0C meal, we found significant linear dose–response reductions in the 3-h postprandial incremental AUC (iAUC) for CGM glucose of 19% and 32% during D1C and D2C meals respectively (p < 0.05) and non-significant linear dose response reductions in iAUC of insulin (p = 0.089). Notably, we found significant dose-dependent increases in postprandial triglyceride with increasing curry doses (p < 0.01). Significant increases in TPE with increasing curry doses were also observed (p < 0.01).


Polyphenol-rich curry intake can improve postprandial glucose homeostasis. The longer term effects remain to be established.


Spices Curry Polyphenols Continuous glucose monitoring Postprandial insulinemia Postprandial triglyceridemia 



The authors thank Professor Zhou Weibiao, from the Food Science and Technology Program, c/o Department of Chemistry, National University of Singapore for the use the blast freezer in his laboratory for the preparation of the test meals for the study. They also thank Susanna Lim for her assistance with phlebotomy and the volunteers for taking part in this study. This project was funded by the Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore.

Author contributions

SH and CJH was involved in developing the concept of the study; SH, CJH, MKSL, ECYC, SCC designed the research; SCC, SH, SHL and JL conducted research; SCC, SH, SHL analyzed the data or performed statistical analysis; SH, SCC, CJH wrote the manuscript and all authors had read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Amiot M, Riva C, Vinet A (2016) Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev 17(7):573–586CrossRefGoogle Scholar
  2. 2.
    Tresserra-Rimbau A, Guasch-Ferré M, Salas-Salvadó J, Toledo E, Corella D, Castañer O, Guo X, Gómez-Gracia E, Lapetra J, Arós F (2016) Intake of total polyphenols and some classes of polyphenols is inversely associated with diabetes in elderly people at high cardiovascular disease risk. J Nutr 146(4):767–777CrossRefGoogle Scholar
  3. 3.
    Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA, Ryder JJ, Hall WL, Cassidy A (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 88(1):38–50Google Scholar
  4. 4.
    Tresserra-Rimbau A, Rimm EB, Medina-Remón A, Martínez-González M, De la Torre R, Corella D, Salas-Salvadó J, Gómez-Gracia E, Lapetra J, Arós F (2014) Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr Metab Cardiovasc Dis 24(6):639–647CrossRefGoogle Scholar
  5. 5.
    Pinto P, Santos CN (2017) Worldwide (poly) phenol intake: assessment methods and identified gaps.  Eur J Nutr 56(4):1393–1408CrossRefGoogle Scholar
  6. 6.
    Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26(8):1001–1043CrossRefGoogle Scholar
  7. 7.
    Taguchi C, Fukushima Y, Kishimoto Y, Suzuki-Sugihara N, Saita E, Takahashi Y, Kondo K (2015) Estimated dietary polyphenol intake and major food and beverage sources among elderly Japanese. Nutrients 7(12):10269–10281CrossRefGoogle Scholar
  8. 8.
    Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747Google Scholar
  9. 9.
    Opara EI, Chohan M (2014) Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int J Mol Sci 15(10):19183–19202CrossRefGoogle Scholar
  10. 10.
    Pérez-Jiménez J, Neveu V, Vos F, Scalbert A (2010) Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur J Clin Nutr 64:S112-S120CrossRefGoogle Scholar
  11. 11.
    Allen RW, Schwartzman E, Baker WL, Coleman CI, Phung OJ (2013) Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann Fam Med 11(5):452–459CrossRefGoogle Scholar
  12. 12.
    Akilen R, Tsiami A, Devendra D, Robinson N (2012) Cinnamon in glycaemic control: systematic review and meta analysis. Clin Nutr 31(5):609–615CrossRefGoogle Scholar
  13. 13.
    Ghorbani Z, Hekmatdoost A, Mirmiran P (2014) Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. Int J Endocrinol Metab 12(4):e18081CrossRefGoogle Scholar
  14. 14.
    Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin: getting back to the roots. Ann N Y Acad Sci 1056(1):206–217CrossRefGoogle Scholar
  15. 15.
    Bi X, Lim J, Henry CJ (2017) Spices in the management of diabetes mellitus. Food Chem 217:281–293CrossRefGoogle Scholar
  16. 16.
    Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78(3):517S-520SGoogle Scholar
  17. 17.
    Lila MA (2007) From beans to berries and beyond. Ann N Y Acad Sci 1114(1):372–380CrossRefGoogle Scholar
  18. 18.
    Skulas-Ray AC, Kris-Etherton PM, Teeter DL, Chen CO, Heuvel JPV, West SG (2011) A high antioxidant spice blend attenuates postprandial insulin and triglyceride responses and increases some plasma measures of antioxidant activity in healthy, overweight men. J Nutr 141(8):1451–1457CrossRefGoogle Scholar
  19. 19.
    George R, Garcia A, Edwards C (2015) Glycaemic responses of staple South Asian foods alone and combined with curried chicken as a mixed meal. J Hum Nutr Diet 28(3):283–291CrossRefGoogle Scholar
  20. 20.
    Siruguri V, Bhat RV (2015) Assessing intake of spices by pattern of spice use, frequency of consumption and portion size of spices consumed from routinely prepared dishes in southern India. Nutr J 14(1):7CrossRefGoogle Scholar
  21. 21.
    Tantipopipat S, Boonpraderm A, Charoenkiatkul S, Wasantwisut E, Winichagoon P (2010) Dietary intake of spices and herbs in habitual Northeast Thai diets. Mal J Nutr 16(1):137–148Google Scholar
  22. 22.
    Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat Protoc 2(4):875–877CrossRefGoogle Scholar
  23. 23.
    Medina-Remón A, Barrionuevo-González A, Zamora-Ros R, Andres-Lacueva C, Estruch R, Martínez-González M-Á, Diez-Espino J, Lamuela-Raventos RM (2009) Rapid Folin–Ciocalteu method using microtiter 96-well plate cartridges for solid phase extraction to assess urinary total phenolic compounds, as a biomarker of total polyphenols intake. Anal Chim Acta 634(1):54–60CrossRefGoogle Scholar
  24. 24.
    Alssema M, Boers HM, Ceriello A, Kilpatrick ES, Mela DJ, Priebe MG, Schrauwen P, Wolffenbuttel BH, Pfeiffer AF (2015) Diet and glycaemia: the markers and their meaning. A report of the Unilever Nutrition Workshop. Br J Nutr 113(2):239–248CrossRefGoogle Scholar
  25. 25.
    Li Z, Henning SM, Zhang Y, Zerlin A, Li L, Gao K, Lee R-P, Karp H, Thames G, Bowerman S (2010) Antioxidant-rich spice added to hamburger meat during cooking results in reduced meat, plasma, and urine malondialdehyde concentrations. Am J Clin Nutr 91(5):1180–1184CrossRefGoogle Scholar
  26. 26.
    Nakayama H, Tsuge N, Sawada H, Masamura N, Yamada S, Satomi S, Higashi Y (2014) A single consumption of curry improved postprandial endothelial function in healthy male subjects: a randomized, controlled crossover trial. Nutr J 13(1):67CrossRefGoogle Scholar
  27. 27.
    Cao J, Zhang Y, Chen W, Zhao X (2010) The relationship between fasting plasma concentrations of selected flavonoids and their ordinary dietary intake. Br J Nutr 103(2):249CrossRefGoogle Scholar
  28. 28.
    Cassidy A, Minihane A-M (2017) The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 105(1):10–22CrossRefGoogle Scholar
  29. 29.
    Lampe JW (2009) Interindividual differences in response to plant-based diets: implications for cancer risk. Am J Clin Nutr 89(5):1553S-1557SGoogle Scholar
  30. 30.
    Manach C, Milenkovic D, de Wiele T, Rodriguez-Mateos A, Roos B, Garcia-Conesa MT, Landberg R, Gibney ER, Heinonen M, Tomás-Barberán F (2017) Addressing the inter-individual variation in response to consumption of plant food bioactives—towards a better understanding of their role in healthy ageing and cardiometabolic risk reduction. Mol Nutr Food Res 61(6):1600557CrossRefGoogle Scholar
  31. 31.
    Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8):2073S–2085SGoogle Scholar
  32. 32.
    Vareed SK, Kakarala M, Ruffin MT, Crowell JA, Normolle DP, Djuric Z, Brenner DE (2008) Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomark Prev 17(6):1411–1417CrossRefGoogle Scholar
  33. 33.
    Graefe EU, Wittig J, Mueller S, Riethling AK, Uehleke B, Drewelow B, Pforte H, Jacobasch G, Derendorf H, Veit M (2001) Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol 41(5):492–499CrossRefGoogle Scholar
  34. 34.
    Neveu V, Perez-Jimenez J, Vos F, Crespy V, Du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D (2010) Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database 2010:bap024CrossRefGoogle Scholar
  35. 35.
    Standl E, Schnell O, Ceriello A (2011) Postprandial hyperglycemia and glycemic variability. Diabetes Care 34(Supplement 2):S120–S127CrossRefGoogle Scholar
  36. 36.
    O’Keefe JH, Bell DS (2007) Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am J Cardiol 100(5):899–904CrossRefGoogle Scholar
  37. 37.
    Gerich JE (2003) Clinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch Intern Med 163(11):1306–1316CrossRefGoogle Scholar
  38. 38.
    Hanefeld M, Koehler C, Schaper F, Fuecker K, Henkel E, Temelkova-Kurktschiev T (1999) Postprandial plasma glucose is an independent risk factor for increased carotid intima-media thickness in non-diabetic individuals. Atherosclerosis 144(1):229–235CrossRefGoogle Scholar
  39. 39.
    Bonora E, Muggeo M (2001) Postprandial blood glucose as a risk factor for cardiovascular disease in type II diabetes: the epidemiological evidence. Diabetologia 44(12):2107–2114CrossRefGoogle Scholar
  40. 40.
    Esposito K, Giugliano D, Nappo F, Marfella R (2004) Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation 110(2):214–219CrossRefGoogle Scholar
  41. 41.
    Milenkovic D, Morand C, Cassidy A, Konic-Ristic A, Tomás-Barberán F, Ordovas JM, Kroon P, De Caterina R, Rodriguez-Mateos A (2017) Interindividual variability in biomarkers of cardiometabolic health after consumption of major plant-food bioactive compounds and the determinants involved. Adv Nutr 8(4):558–570Google Scholar
  42. 42.
    González-Sarrías A, Combet E, Pinto P, Mena P, Dall’Asta M, Garcia-Aloy M, Rodríguez-Mateos A, Gibney ER, Dumont J, Massaro M (2017) A systematic review and meta-analysis of the effects of flavanol-containing tea, cocoa and apple products on body composition and blood lipids: exploring the factors responsible for variability in their efficacy. Nutrients 9(7):746CrossRefGoogle Scholar
  43. 43.
    Nyambe-Silavwe H, Williamson G (2016) Polyphenol-and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: a randomised, controlled, single-blind, cross-over intervention. Br J Nutr 116(3):443–450CrossRefGoogle Scholar
  44. 44.
    Hlebowicz J, Hlebowicz A, Lindstedt S, Björgell O, Höglund P, Holst JJ, Darwiche G, Almer L-O (2009) Effects of 1 and 3 g cinnamon on gastric emptying, satiety, and postprandial blood glucose, insulin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1, and ghrelin concentrations in healthy subjects. Am J Clin Nutr 89(3):815–821CrossRefGoogle Scholar
  45. 45.
    Solomon TP, Blannin AK (2009) Changes in glucose tolerance and insulin sensitivity following 2 weeks of daily cinnamon ingestion in healthy humans. Eur J Appl Physiol 105(6):969CrossRefGoogle Scholar
  46. 46.
    Bhat SL, Abbasi FA, Blasey C, Reaven GM, Kim SH (2013) Beyond fasting plasma glucose: the association between coronary heart disease risk and postprandial glucose, postprandial insulin and insulin resistance in healthy, nondiabetic adults. Metabolism 62(9):1223–1226CrossRefGoogle Scholar
  47. 47.
    de Bock M, Derraik JG, Cutfield WS (2012) Polyphenols and glucose homeostasis in humans. J Acad Nutr Diet 112(6):808–815CrossRefGoogle Scholar
  48. 48.
    Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K (2010) Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 11(4):1365–1402CrossRefGoogle Scholar
  49. 49.
    Kim Y, Keogh JB, Clifton PM (2016) Polyphenols and glycemic control. Nutrients 8(1):17CrossRefGoogle Scholar
  50. 50.
    Medagama AB (2015) The glycaemic outcomes of Cinnamon, a review of the experimental evidence and clinical trials. Nutr J 14(1):108CrossRefGoogle Scholar
  51. 51.
    Magistrelli A, Chezem JC (2012) Effect of ground cinnamon on postprandial blood glucose concentration in normal-weight and obese adults. J Acad Nutr Diet 112(11):1806–1809CrossRefGoogle Scholar
  52. 52.
    Hlebowicz J, Darwiche G, Björgell O, Almér L-O (2007) Effect of cinnamon on postprandial blood glucose, gastric emptying, and satiety in healthy subjects. Am J Clin Nutr 85(6):1552–1556Google Scholar
  53. 53.
    Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S (2012) Curcumin extract for prevention of type 2 diabetes. Diabetes Care 35(11):2121–2127CrossRefGoogle Scholar
  54. 54.
    Srinivasan K (2005) Plant foods in the management of diabetes mellitus: spices as beneficial antidiabetic food adjuncts. Int J Food Sci Nutr 56(6):399–414CrossRefGoogle Scholar
  55. 55.
    Ahuja KD, Robertson IK, Geraghty DP, Ball MJ (2006) Effects of chili consumption on postprandial glucose, insulin, and energy metabolism. Am J Clin Nutr 84(1):63–69Google Scholar
  56. 56.
    Akhtar MS, Ramzan A, Ali A, Ahmad M (2011) Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int J Food Sci Nutr 62(6):609–616CrossRefGoogle Scholar
  57. 57.
    Sobenin IA, Nedosugova LV, Filatova LV, Balabolkin MI, Gorchakova TV, Orekhov AN (2008) Metabolic effects of time-released garlic powder tablets in type 2 diabetes mellitus: the results of double-blinded placebo-controlled study. Acta Diabetol 45(1):1–6CrossRefGoogle Scholar
  58. 58.
    Mozaffari-Khosravi H, Talaei B, Jalali B-A, Najarzadeh A, Mozayan MR (2014) The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Complement Ther Med 22(1):9–16CrossRefGoogle Scholar
  59. 59.
    Hoffman R, Ranjbar G, Madden A (2016) Inhibition of the glycaemic response by onion: a comparison between lactose-tolerant and lactose-intolerant adults. Eur J Nutr 70(9):1089–1091CrossRefGoogle Scholar
  60. 60.
    McCrea CE, West SG, Kris-Etherton PM, Lambert JD, Gaugler TL, Teeter DL, Sauder KA, Gu Y, Glisan SL, Skulas-Ray AC (2015) Effects of culinary spices and psychological stress on postprandial lipemia and lipase activity: results of a randomized crossover study and in vitro experiments. J Transl Med 13(1):7CrossRefGoogle Scholar
  61. 61.
    Botelho FV, Enéas LR, Cesar GC, Bizzotto CS, Tavares É, Oliveira FcA, Gloria MBA, Silvestre MP, Arantes RM, Alvarez-Leite JI (2004) Effects of eggplant (Solanum melongena) on the atherogenesis and oxidative stress in LDL receptor knock out mice (LDLR–/–). Food Chem Toxicol 42(8):1259–1267CrossRefGoogle Scholar
  62. 62.
    Praça JM, Thomaz A, Caramelli B (2004) Eggplant (Solanum melongena) extract does not alter serum lipid levels. Arq Bras Cardiol 82(3):269–272CrossRefGoogle Scholar
  63. 63.
    Guimarães P, Galvão A, Batista C, Azevedo G, Oliveira R, Lamounier R, Freire N, Barros A, Sakurai E, Oliveira J (2000) Eggplant (Solanum melongena) infusion has a modest and transitory effect on hypercholesterolemic subjects. Braz J Med Biol Res 33(9):1027–1036CrossRefGoogle Scholar
  64. 64.
    Jenkins DJ, Kendall CW, Marchie A, Faulkner DA, Wong JM, de Souza R, Emam A, Parker TL, Vidgen E, Trautwein EA (2005) Direct comparison of a dietary portfolio of cholesterol-lowering foods with a statin in hypercholesterolemic participants. Am J Clin Nutr 81(2):380–387Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS)Agency for Science Technology and Research (A*STAR)SingaporeSingapore
  2. 2.Division of Medicine, Department of EndocrinologyTan Tock Seng HospitalSingaporeSingapore
  3. 3.Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
  4. 4.Department of BiochemistryNational University of SingaporeSingaporeSingapore
  5. 5.Department of PharmacyNational University of SingaporeSingaporeSingapore

Personalised recommendations