Advertisement

European Journal of Nutrition

, Volume 57, Issue 4, pp 1275–1299 | Cite as

Antidiabetic plant-derived nutraceuticals: a critical review

  • Jayapal Naveen
  • Vallikannan BaskaranEmail author
Review

Abstract

Diabetes mellitus (DM) is one of the major health problems in the world, especially amongst the urban population. Chemically synthesized drugs used to decrease the ill effects of DM and its secondary complications cause adverse side effects, viz., weight gain, gastrointestinal disturbances, and heart failure. Currently, various other approaches, viz., diet control, physical exercise and use of antidiabetic plant-derived molecules/foods are advocated to manage DM, as they are economical with fewer or no side effects. This review mainly focuses on antidiabetic plants, chemically characterized plant molecules and plant-based foods in the treatment of DM. Very little science-based evidence is available on the mechanism of action of plant-derived food molecules on the DM targets. Critical DM targets include α-amylase, α-glucosidase, DPP-IV, aldose reductase, PPAR-γ, AMP kinase and GLUT4. In-depth studies carried out on a few of those targets with specific mechanisms of action are addressed in this review. This review may help future researchers in identifying a right plant molecule to treat DM or to develop food formulations for DM management.

Keywords

Antidiabetic Diabetes mellitus Insulin Nutraceuticals 

Notes

Acknowledgements

Author Dr. Naveen, J. (Award No. F./PDFSS-2015-17-KAR-11600) greatly acknowledges the University Grant Commission (UGC), Government of India, for financial assistance. The authors are grateful to Dr. N. S. Mahendrakar, Ex-chief editor, Journal of Food Science and Technology, for editing the manuscript for its English language.

Author contributions

First author NJ performed the literature search and prepared the manuscript. Corresponding author VB edited the manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    World Health Organization (WHO) (2003) The World health report 2003. World Health Organization, GenevaCrossRefGoogle Scholar
  2. 2.
    Ahmed AM (2002) History of diabetes mellitus. Saudi Med J 23(4):373–378PubMedGoogle Scholar
  3. 3.
    World Health Organization (WHO) (1985) Diabetes mellitus: report of a WHO study group Geneva. Technical report series 727. WHOGoogle Scholar
  4. 4.
    Kumar PJ, Clark M (2002) Textbook of clinical medicine. Saunders, LondonGoogle Scholar
  5. 5.
    Beverley B, Eschwège E (2003) The diagnosis and classification of diabetes and impaired glucose tolerance. In: Textbook of diabetes 1 John C Pickup and Gareth Williams, 3rd edn, pp 2.1–2.11Google Scholar
  6. 6.
    McGill M, Felton AM (2007) New global recommendations: a multidisciplinary approach to improving outcomes in diabetes. Prim Care Diabetes 1(1):49–55CrossRefPubMedGoogle Scholar
  7. 7.
    Anthony FS, Braunwald E, Kasper DL, Hauser HL, Longo DL, Jomeson JL, Coscaz J (2008) Harrison’s principles of internal medicine, 17th edn, Mc Graw Hill Publication, p 2275Google Scholar
  8. 8.
    American Diabetes Association (ADA) (2012) Diagnosis and classification of diabetes mellitus. Diabetes Care 35(1):S64-S71Google Scholar
  9. 9.
    Vlad A, Timar R (2012) Pathogenesis of type 1 diabetes mellitus: a brief overview. Romanian J Diabetes Nutr Metab Dis 19(1):67–72Google Scholar
  10. 10.
    International Diabetic Federation (IDF) (2016) IDF diabetic atlas-7-edition. http://www.vision2020uk.org.uk/idf-diabetes-atlas-7th-edition
  11. 11.
    World Health Organization (WHO) (2016) Global report on diabetes. http://www.who.int/iris/bitstream/10665. Accessed 16 May 2017
  12. 12.
    Whitinga DR, Guariguataa L, Weila C, Shaw J (2011) IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321CrossRefGoogle Scholar
  13. 13.
    Blonde L (2009) Current antihyperglycemic treatment strategies for patients with type 2 diabetes mellitus. Cleve Clin J Med 76(5):S4-S11Google Scholar
  14. 14.
    Distefano JK, Watanabe RM (2010) Pharmacogenetics of anti-diabetes drugs. Pharmaceuticals (Basel) 3:2610–2646CrossRefGoogle Scholar
  15. 15.
    Tahrani AA, Bailey CJ, Del Prato S, Barnett AH (2011) Management of type 2 diabetes: new and future developments in treatment. Lancet 378:182–197CrossRefPubMedGoogle Scholar
  16. 16.
    Bennett WL, Wilson LM, Bolen S, Maruthur N (2011) Oral diabetes medications for adults with type 2 diabetes: an update [internet]. Agency for Healthcare Research and Quality (US), Rockville (MD) (Comparative Effectiveness Reviews, No. 27.). Available from: https://www.ncbi.nlm.nih.gov/books/NBK55754
  17. 17.
    Mitri J, Hamdy O (2009) Diabetes medications and body weight. pp 573–584Google Scholar
  18. 18.
    Inzucchi SE (2002) Oral antihyperglycemic therapy for type 2 diabetes. JAMA 287:360–372CrossRefPubMedGoogle Scholar
  19. 19.
    Cheng AY, Fantus IG (2005) Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can Med Assoc J 172:213–226CrossRefGoogle Scholar
  20. 20.
    Noh RM, Graveling AJ, Frier BM (2011) Medically minimising the impact of hypoglycemia in type 2 diabetes: a review. Expert Opin Pharmacother 12:2161–2175CrossRefPubMedGoogle Scholar
  21. 21.
    Barnard ND, Scialli AR, Turner-McGrievy G, Lanou AJ, Glass J (2005) The effects of a low fat, plant-based dietary intervention on body weight, metabolism, and insulin sensitivity. Am J Med 118:991–997CrossRefPubMedGoogle Scholar
  22. 22.
    American Diabetes Association (ADA) (2010) Standards of medical care in diabetes-2010. Diabetes Care 33(1):S11-61Google Scholar
  23. 23.
    Giridhari VVA, Malathi D, Geetha K (2011) Antidiabetic property of drumstick (Moringa olifera) leaf tablets. Int J Health Nutr 2:1–5Google Scholar
  24. 24.
    Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 3(4):200–201CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    World Health Organization (WHO) (2002) Traditional medicine strategy 2002–2005. WHO Publication 2002:1–6Google Scholar
  26. 26.
    Haq I (2004) Safety of medicinal plants. Pak J Med Res 43(4):203–210Google Scholar
  27. 27.
    Karunanayake EH, Tennekoon KH (1993) Search of novel hypoglycaemic agents from medicinal plants. In: Sharma AK (ed) Diabetes mellitus and its complications. An update. Macmillan India Ltd, New DelhiGoogle Scholar
  28. 28.
    Ahmed I, Adeghate E, Cummings E, Sharma AK, Singh J (2004) Beneficial effects and mechanism of action of Momordica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat. Mol Cell Biochem 261:63–70CrossRefPubMedGoogle Scholar
  29. 29.
    Ribnicky DM, Kuhn P, Poulev A, Logendra S, Zuberi A (2009) Improved absorption and bioactivity of active compounds from an anti-diabetic extract of Artemisia dracunculus L. ‎Int J Pharm 370:87–92CrossRefPubMedGoogle Scholar
  30. 30.
    Nasri H, Baradaran A, Shirzad H, Rafieian-Kopaei M (2014) New concepts in nutraceuticals as alternative for pharmaceuticals. Int J Prev Med 5(12):1487–1499PubMedPubMedCentralGoogle Scholar
  31. 31.
    Sofowora A (1984) Medicinal plants and traditional medicine in Africa. Wiley, New York, pp 256–257Google Scholar
  32. 32.
    Seth SD, Sharma B (2004) Medicinal plants of India. Indian J Med Res 120:9–11PubMedGoogle Scholar
  33. 33.
    Alarcon-Aguilara FJ, Roman-Ramos R, Perez-Gutierrez S, Aguilar-Contreras A, Contreras-Weber CC (1998) Study of the anti-hyperglycemic effect of plants used as antidiabetics. J Ethnopharmacol 61:101–110CrossRefPubMedGoogle Scholar
  34. 34.
    Trojan-Rodrigues M, Alves TLS, Soares GLG, Ritter MR (2011) Plants used as antidiabetics in popular medicine in Rio Grande do Sul, southern Brazil. J Ethnopharmacol 139(1):155–163Google Scholar
  35. 35.
    Wadood A, Wadood N, Shah SA (1989) Effects of Acacia arabica and Carallum edulis on blood sugar levels of normal and alloxan diabetic rabbits. J Pak Med Assoc 39(8):208–212PubMedGoogle Scholar
  36. 36.
    Patel DK, Kumar R, Laloo D, Hemalatha S (2012) Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed 2(5):411–420CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tanko Y, Yerima M, Mahdi MA, Yaro AH, Musa KY, Mohammed A (2008) Hypoglycemic activity of methanolic stem bark of Adansonnia digitata extract on blood glucose levels of streptozocin-induced diabetic wistar rats. Int J Appl Res Nat Prod 1(2):32–36Google Scholar
  38. 38.
    Geetha G, Kalavalarasariel Gopinathapillai P, Sankar V (2011) Anti diabetic effect of Achyranthes rubrofusca leaf extracts on alloxan induced diabetic rats. Pak J Pharm Sci 24:193–199PubMedGoogle Scholar
  39. 39.
    Awadi FMA, Gumaa KA (1987) Study on the activity of the individual plants of an antidiabetic mixture. Acta Diabetol Lat 24:37–41CrossRefGoogle Scholar
  40. 40.
    Sabu MC, Ramadasan K (2001) Antidiabetic activity of Aegle marmelos and its relationship with its antioxidant properties. Indian J Physiol Pharmacol 48(1):81–88Google Scholar
  41. 41.
    Rao NK (2006) Anti-Hyperglycemic and renal protective activities of Andrographis paniculata roots chloroform extract. Iran J Pharmacol Ther 5:47–50Google Scholar
  42. 42.
    Kumar V, Khanna AK, Khan MM, Singh R, Singh S, Chander R (2009) Hypoglycemic, lipid lowering and antioxidant activities in root extract of Anthocephalus indicus in alloxan induced diabetic rats. Indian J Clin Biochem 24(1):65–69CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Selvan VT, Manikandan L, Kumar GPS, Suresh R, Kakoti BB, Gomathi P (2008) Antidiabetic and antioxidant effect of methanol extract of Artanema sesamoides in streptozotocin-induced diabetic rats. Int J Appl Res Nat Prod 1(1):25–33Google Scholar
  44. 44.
    Chattopadhyay RR, Chattopadhyay RN, Nandy AK, Poddar G, Maitra SK (1987) The effect of fresh leaves of Azadirachta indica on glucose uptake and glycogen content in the isolated rat hemi diaphragm. Bull Calcutta Sch Trop Med 35:8–12Google Scholar
  45. 45.
    Biradar SM, Rangani AT, Kulkarni VH, Joshi H, Habbu PV, Smita DM (2010) Prevention of onset of hyperglycemia by extracts of Argyriea cuneata on alloxan-induced diabetic rats. J Pharm Res 3:2186–2187Google Scholar
  46. 46.
    Pari L, Satheesh MA (2004) Antidiabetic activity of Boerhaavia diffusa L. effect on hepatic key enzymes in experimental diabetes. J Ethnopharmacol 91(1):109–113CrossRefPubMedGoogle Scholar
  47. 47.
    Dheer R, Bhatnagar P (2010) A study of the antidiabetic activity of Barleria prionitis Linn. Indian J Pharmacol 42:70–73CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Deore SL, Khadabadi SS, Daulatkar VD, Deokate UA, Farooqui IU (2008) Evaluation of hypoglycemic and antidiabetic activity of bark of Butea monosperma. ‎Pharmacogn Mag 4(13):134–138Google Scholar
  49. 49.
    Hakkim FL, Girija S, Kumar RS, Jalaludeen MD (2007) Effect of aqueous and ethanol extracts of Cassia auriculata L. flowers on diabetes using alloxan induced diabetic rats. Intern J Diabetes Metab 15:100–106Google Scholar
  50. 50.
    Rathee S, Mogla OP, Sardana S, Vats M, Rathee P (2010) Antidiabetic activity of Capparis decidua Forsk Edgew. J Pharm Res 3:231–234Google Scholar
  51. 51.
    Nabeel MA, Kathiresan K, Manivannan S (2010) Antidiabetic activity of the mangrove species Ceriops decandra in alloxan-induced diabetic rats. J Diabetes 2:97–103CrossRefPubMedGoogle Scholar
  52. 52.
    Kamble SM, Kamlakar PL, Vaidya S, Bambole VD (1998) Influence of Coccinia indica on certain enzymes in glycolytic and lipolytic pathway in human. Indian J Med Sci 52(4):143–146PubMedGoogle Scholar
  53. 53.
    Ravi K, Sivagnanam K, Subramanian S (2004) Antihyperlipidemic effect of Eugenia jambolana seeds kernels on streptozotocin induced diabetes in rats. J Med Food 72(2):187–191CrossRefGoogle Scholar
  54. 54.
    Vishnu B, Naveen A, Akshay K, Sikarwar MS, Patil MB (2010) Antidiabetic activity of insulin plant (Costus igneus) leaf extract in diabetic rats. J Pharma Res 3:608–611Google Scholar
  55. 55.
    Arjun P, Shivesh J, Sahu AN (2009) Antidiabetic activity of aqueous extract of Eucalyptus citriodora Hook. in alloxan induced diabetic rats. ‎Pharmacogn Mag 5:51–54Google Scholar
  56. 56.
    Chaturvedi N, Sharma S (2010) Antidiabetic and antihyperlipidemic activity of water soluble solid extract of Ficus bengalensis Linn. bark in rats. Biochem Cell Arch 10:65–69Google Scholar
  57. 57.
    Sharma S, Chaturvedi M, Edwin E, Shukla S, Sagrawat H (2007) Evaluation of the phytochemicals and antidiabetic activity of Ficus bengalensis. Int J Diabetes 27(2):56–59Google Scholar
  58. 58.
    Rao RB, Murugesan T, Sinha S, Saha BP, Pal M, Mandal SC (2002) Glucose lowering efficacy of Ficus racemosa bark extract in normal and alloxan diabetic rats. Phytother Res 16(6):590–592CrossRefGoogle Scholar
  59. 59.
    Shanmugasundaram ER, Panneerselvam C, Samudaram P, Shanmugasundaram KR (1983) Enzyme changes and glucose utilization in diabetic rats. ‎J Ethnopharmacol 7(2):205–234CrossRefPubMedGoogle Scholar
  60. 60.
    Okokon JE, Umoh EE, Etim EI, Jackson CL (2009) Antiplasmodial and antidiabetic activities of ethanolic leaf extract of Heinsia crinata. J Med Food 12:131–136CrossRefPubMedGoogle Scholar
  61. 61.
    Venkatesh S, Madhava Reddy B, Dayanand Reddy G, Mullangi R, Lakshman M (2010) Antihyperglycemic and hypolipidemic effects of Helicteres isora roots in alloxan-induced diabetic rats: a possible mechanism of action. J Med Food 64:295–304Google Scholar
  62. 62.
    Mahalingam G, Krishnan K (2008) Hypoglycemic activity of Hemidesmus indicus R. Br. on streptozotocin-induced diabetic rats. Int J Diabetes 28(1):6–10Google Scholar
  63. 63.
    Venkatesh S, Thilagavathi J, Shyam Sundar D (2008) Anti-diabetic activity of flowers of Hibiscus rosasinensis. Fitoterapia 79(2):79–81CrossRefPubMedGoogle Scholar
  64. 64.
    Pankaj NK, Alam M, Roy BK (2006) Antidiabetic activity of seed powder of Holarrhena antidysenterica in rabbits. J Res Birsa Agric Univ 17(1):95–103Google Scholar
  65. 65.
    Sangameswaran B, Ilango K, Chaurey M, Bhaskar VH (2010) Antihyperglycemic and antihyperlipidaemic effects of extracts of Ipomoea reniformis Chois on alloxan induced diabetic rats. Ann Biol Sci 1:157–163Google Scholar
  66. 66.
    Teimoori M, Kouhsari MS, Ghafarzadegan R, Hajiaghaee R (2010) Antidiabetic effects of Juglans regia leaves methanolic extract on alloxan-induced male Wistar rats. J Med Plants Res 9:143–149Google Scholar
  67. 67.
    Kumar KV, Sharief SD, Rajkumar R, Ilango B, Sukumar E (2010) Antidiabetic potential of Lantana aculeata root extract in alloxan-induced diabetic rats. Int J Phytomed 2:299–303CrossRefGoogle Scholar
  68. 68.
    Syamsudin I, Winarno H (2008) The effect of Inai (Lawsonia inermis) leaves extract on blood sugar level: an experimentally study. Res J Pharmacol 2(2):20–23Google Scholar
  69. 69.
    Eddouks M, Maghrani M, Zeggwagh NA, Michel JB (2008) Study of the hypoglycaemic activity of Lepidium sativum L. aqueous extract in normal and diabetic rats. J Ethnopharmacol 97:391–395CrossRefGoogle Scholar
  70. 70.
    Tripathi UN, Chandra D (2010) Anti-hyperglycemic and anti-oxidative effect of aqueous extract of Momordica charantia pulp and Trigonella foenum graecum seed in alloxan-induced diabetic rats. Indian J Biochem Biophys 47:227–233PubMedGoogle Scholar
  71. 71.
    Cakici I, Hurmoglu C, Tunctan AB, Kanzik NI, Sener B (1994) Hypoglycemic effects of Momordica charantia extract in normoglycaemic or cyproheptadin induced hyperglycaemic mice. J Ethnopharmacol 44(2):117–122CrossRefPubMedGoogle Scholar
  72. 72.
    Wani VK, Dubey RD, Verma S, Sengottuvelu S, Sivakumar T (2011) Antidiabetic activity of methanolic root extract of Mukia maderaspatana in Alloxan induced diabetic rats. Int J Pharm Technol 3:214–220Google Scholar
  73. 73.
    Somani RS, Singhai AK (2008) Hypoglycaemic and antidiabetic activities of seeds of Myristica fragrans in normoglycaemic and alloxan-induced diabetic rats. Asian J Exp Biol Sci 22(1):95–102Google Scholar
  74. 74.
    Sreenathkumar S, Arcot S (2010) Antidiabetic activity of Nymphaea pubescens Willd—a plant drug of aquatic flora. J Pharm Res 3:3067–3069Google Scholar
  75. 75.
    Bihari CG, Manaswini B, Keshari PS, Kumar TS (2011) Phytochemical investigation & evaluation for antidiabetic activity of leafy extracts of various Ocimum (Tulsi) species by alloxan induced diabetic model. J Pharm Res 4:28–29Google Scholar
  76. 76.
    Hannan JMA, Marenah L, Ali L, Rokeya B, Flatt PR, Wahab YHA (2006) Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic ß-cells. J Endocrinol 189:127–136CrossRefPubMedGoogle Scholar
  77. 77.
    Mard SA, Jalalvand K, Jafarinejad M, Balochi H, Naseri MKG (2010) Evaluation of the antidiabetic and antilipaemic activities of the hydroalcoholic extract of Phoenix dactylifera palm leaves and its fractions in alloxan-induced diabetic rats. Malays J Med Sci 17:4–13PubMedPubMedCentralGoogle Scholar
  78. 78.
    Okoli CO, Ibiam AF, Ezike AC, Akah PA, Okoye TC (2010) Evaluation of antidiabetic potentials of Phyllanthus niruri in alloxan diabetic rat. Afr J Biotechnol 9:248–259Google Scholar
  79. 79.
    Jasmin HB, Narasimhacharya AVRL (2007) Comparative antidiabetic, hypolipidemic, and antioxidant properties of Phyllanthus niruri in normal and diabetic rats. Pharm Biol 45(7):569–574CrossRefGoogle Scholar
  80. 80.
    Shabeer J, Srivastava RS, Singh SK (2009) Antidiabetic and antioxidant effect of various fractions of Phyllanthus simplex in alloxan diabetic rats. J Ethnopharmacol 24:34–38CrossRefGoogle Scholar
  81. 81.
    Lanjhiyana S, Garabadu D, Ahirwar D, Bigoniya P, Rana AC, Patra KC (2011) Hypoglycemic activity studies on aerial leaves of Pongamia pinnata (L.) in alloxan-induced diabetic rats. Der Pharm Lett 3:55–70Google Scholar
  82. 82.
    Nilambari D, Shrikant T, Vipinchandra PA (2008) Comprehensive review of Rubia cordifolia Linn. Pharmacogn Rev 2(3):124–134Google Scholar
  83. 83.
    Poongothai K, Ahmed KSZ, Ponmurugan P, Jayanthi M (2010) Assessment of antidiabetic and antihyperlipidemic potential of Solanum nigrum and Musa paradisiaca in alloxan induced diabetic rats. J Pharm Res 3:2203–2205Google Scholar
  84. 84.
    Ubaka CM, Ukwe CV (2010) Antidiabetic effect of the methanolic seed extract of Sphenostylis stenocarpa (Hoechst ex. A. Rich. Harms) in rats. J Pharm Res 3:2192–2194Google Scholar
  85. 85.
    Ahmad A, Balakrishnan BR, Akhtar R, Pimprikar R (2009) Antidiabetic activity of leaves of Tephrosia villosa Pers. in alloxan induced diabetic rats. J Pharm Res 2:528–531Google Scholar
  86. 86.
    Kumar GPS, Arunselvan P, Kumar DS, Subramanian SP (2006) Anti-diabetic activity of fruits of Terminalia chebula on streptozotocin-induced diabetic rats. J Health Sci 52(3):283–291CrossRefGoogle Scholar
  87. 87.
    Stanely P, Prince M, Menon VP (2000) Hypoglycemic and other related action of Tinospora cordifolia roots in alloxan induced diabetic rats. J Ethnopharmacol 70(1):9–15CrossRefPubMedGoogle Scholar
  88. 88.
    Grover JK, Vats V, Rathi SS (2000) Antihyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzyme involved in carbohydrate metabolism. J Ethnopharmacol 73(3):461–470CrossRefPubMedGoogle Scholar
  89. 89.
    Mowla A, Alauddin M, Rahman MA, Ahmed K (2009) Antihyperglycemic effect of Trigonella foenum-graecum (fenugreek) seed extract in alloxan-induced diabetic rats and its use in diabetes mellitus: A brief qualitative phytochemical and acute toxicity test on the extract. Afr J Tradit Complement Altern Med 6:255–261PubMedPubMedCentralGoogle Scholar
  90. 90.
    Feshani AM, Kouhsari SM, Mohammadi S (2011) Vaccinium arctostaphylos, a common herbal medicine in Iran: molecular and biochemical study of its antidiabetic effects on alloxan-diabetic Wistar rats. J Ethnopharmacol 133:67–74CrossRefPubMedGoogle Scholar
  91. 91.
    Michael UA, David BU, Theophine CO, Philip FU, Ogochukwu AM, Benson VA (2010) Antidiabetic effects of combined aqueous leaf extract of Vernonia amygdalina and metformin in rats. Int J Basic Clin Pharmacol 1:197–202Google Scholar
  92. 92.
    Udayakumar R, Kasthurirengan S, Mariashibu TS, Rajesh M, Anbazhagan VR, Kim SC, Ganapathi A, Choi CW (2009) Hypoglycaemic and Hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. Int J Mol Sci 10(5):2367–2382CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Jarald EE, Joshi SB, Jain DC (2009) Antidiabetic activity of extracts and fraction of Zizyphus mauritiana. Pharm Biol 47:328–334CrossRefGoogle Scholar
  94. 94.
    Ju JE, Joo YH, Chung N, Chung SY, Han SH, Lee YK (2014) Anti-diabetic effects of red rose flowers in streptozotocin-induced diabetic mice. J Korean Soc Appl Biol Chem 57(4):445–448CrossRefGoogle Scholar
  95. 95.
    Gomes RM, de Paulo LF, BonatoPanizzon CPDN, Neves CQ, Cordeiro BC, Zanoni JN, Francisco FA, Piovan S, de Freitas Mathias PC, Longhini R, de Mello JCP, de Oliveira JC, Pedrino GR, da Silva Reis AA, Cecchini AL, Marçal Natali MR (2017) Anti-diabetic effects of the ethyl-acetate fraction of trichiliacatigua in streptozotocin-induced type 1 diabetic rats. Cell Physiol Biochem 42(3):1087–1097CrossRefPubMedGoogle Scholar
  96. 96.
    Rubio OC, Cuellar AC, Rojas N, Castro HV, Rastrelli L, Aquino RA (1999) A polyisoprenylatedbenzophenone from Cuban propolis. J Nat Prod 62:1013CrossRefPubMedGoogle Scholar
  97. 97.
    Malviya N, Jain S, Malviya S (2010) Antidiabetic potential of medicinal plants. Acta Pol Pharm 67(2):113–118PubMedGoogle Scholar
  98. 98.
    Gupta R, Saxena AM (2011) Hypoglycemic and anti-hyperglycemic activities of Syzygium cumini (Linn.) skeels whole fruit, in normal and streptozotocin-induced diabetic rats. Asian J Pharm Biol Res 1:267–272Google Scholar
  99. 99.
    Dineshkumar B, Mitra A, Mahadevappa M (2010) Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya koenigii (Rutaceae) leaves. Int J Phytomed 2:22–30Google Scholar
  100. 100.
    Prabhakar PK, Doble M (2011) Interaction of phytochemicals with hypoglycemic drugs on glucose uptake in L6 myotubes. Phytomed 18:285–291CrossRefGoogle Scholar
  101. 101.
    Aguilar-Santamaria L, Ramirez G, Nicasio P, Alegria-Reyes C, Herrera-Arellano A (2009) Antidiabetic activities of Tecoma stans (L.) Juss. ex Kunth. J Ethnopharmacol 124:284–288CrossRefPubMedGoogle Scholar
  102. 102.
    Al-masri IM, Mohammad MK, Tahaa MO (2009) Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. J Enzyme Inhib Med Chem 24:1061–1066CrossRefPubMedGoogle Scholar
  103. 103.
    Narender T, Shweta S, Tiwari P, Papi RK, Khaliq T, Prathipati P, Puri A, Srivastava A, Chander R, Agarwal SC, Raj K (2007) Antihyperglycemic and antidyslipidemic agent from Aegle marmelos. Bioorg Med Chem Lett 17(6):1808–1811CrossRefPubMedGoogle Scholar
  104. 104.
    Chattopadhyay RR (1999) A comparative evaluation of some blood sugar lowering agents of plant origin. J Ethnopharmacol 67:367–372CrossRefPubMedGoogle Scholar
  105. 105.
    Puri D, Prabhu KM, Murthy PS (2012) Antidiabetic effect of GII compound purified from fenugreek (Trigonella foenum graecum Linn) seeds in diabetic rabbits. Indian J Clin Biochem 27(1):21–27CrossRefPubMedGoogle Scholar
  106. 106.
    Purohit A, Sharma A (2006) Blood glucose lowering potential of Bougainvillea spectabilis leaf extract in streptozotocin induced type-I diabetic albino rats. Indian Drugs 43:538Google Scholar
  107. 107.
    Gayathri M, Kannabiran K (2009) Antidiabetic activity of 2-hydroxy 4-methoxy benzoic acid isolated from the roots of Hemidesmus indicus on streptozotocin-induced diabetic rats. Int J Diabetes Metabol 17:53–57Google Scholar
  108. 108.
    Alonso-Castro AJ, Miranda-Torres AC, González-Chávez MM, Salazar-Olivo LA (2008) Cecropia obtusifolia Bertol and its active compound, chlorogenic acid, stimulate 2-NBD glucose uptake in both insulin-sensitive and insulin-resistant 3T3 adipocytes. J Ethnopharmacol 120(3):458–464CrossRefPubMedGoogle Scholar
  109. 109.
    Peungvicha P, Temsiririrkkul R, Prasain J, Watanabe H (1998) 4-Hydroxybenzoic acid: a hypoglycemic constituent of aqueous extract of Pandanus odorus root. J Ethnopharmacol 62(1):79–84CrossRefPubMedGoogle Scholar
  110. 110.
    Tedong L, Madiraju P, Martineau LC, Vallerand D, Arnason JT, Desire DDP, Lavoie L, Kamtchouing P, Haddad PS (2010) Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells. Mol Nutr Food Res 54(12):1753–1762CrossRefPubMedGoogle Scholar
  111. 111.
    Manickam M, Ramanathan M, Jahroni MA, Chansouria JP, Ray AB (1997) Anti-hyperglycemic activity of phenolics from Pterocarpus marsupium. J Nat Prod 60(6):609–610CrossRefPubMedGoogle Scholar
  112. 112.
    Kobayashi K, Ishihara T, Khono E, Miyase T, Yoshizaki F (2006) Constituents of stem bark of Callistemon rigidus showing inhibitory effects on mouse α-amylase activity. Biol Pharm Bull 29(6):1275–1277CrossRefPubMedGoogle Scholar
  113. 113.
    Zhang M, Chen M, Zhang HQ, Sun S, Xia B, Wu FH (2009) In vivo hypoglycemic effects of phenolics from the root bark of Morus alba. Fitoterapia 80(8):475–477CrossRefPubMedGoogle Scholar
  114. 114.
    Luo J, Chuang T, Cheung J, Quan J, Tsai J, Sullivan C (1998) Masoprocol (nordihydroguaiaretic acid): a new antihyperglycemic agent isolated from the creosote bush (L. tridentata). Eur J Pharmacol 346:77–79CrossRefPubMedGoogle Scholar
  115. 115.
    Anis E, Itrat A, Saeed A, Ghulam M, Abdul M, Nighat A, Syed MAH, Syed S, Muhammad IC (2002) α-glucosidase inhibitory constituents from Cuscuta reflexa. Chem Pharm Bull 50(1):112–114CrossRefPubMedGoogle Scholar
  116. 116.
    Indian Council of Medical Research (ICMR) (1998) Flexible dose open trial of Vijayasar in cases of newly diagnosed non-insulin dependent diabetes mellitus, New Delhi. Indian J Med Res 108:24–29Google Scholar
  117. 117.
    Cherian S, Augusti KT (1993) To study the antidiabetic effects of a glycoside of leucopelargonidin isolated from Ficus bengalensis Linn. Indian J Exp Biol 31:26–29PubMedGoogle Scholar
  118. 118.
    Ha DT, Tuan DT, Thu NB, Nhiem NX, Ngoc TM, Yim N, Bae K (2009) Palbinone and triterpenes from Moutan Cortex (Paeonia suffruticosa, Paeoniaceae) stimulate glucose uptake and glycogen synthesis via activation of AMPK in insulin-resistant human HepG2 cells. Bioorg Med Chem Lett 19:5556–5559CrossRefGoogle Scholar
  119. 119.
    Guerrero-Analco JA, Martineau L, Saleem A, Madiraju P, Muhammad A, Durst T, Haddad P, Arnason JT (2010) Bioassay-guided isolation of the antidiabetic principle from Sorbus decora (Rosaceae) used traditionally by the Eeyou Istchee Cree first nations. J Nat Prod 73:1519–1523CrossRefPubMedGoogle Scholar
  120. 120.
    Deutschländer MS, Lall N, Van de Venter M, Hussein AA (2011) Hypoglycaemic evaluation of a new triterpene and other compounds isolated from Euclea undulata Thunb. var. myrtina (Ebenaceae) root bark. J Ethnopharmacol 16:1091–1095CrossRefGoogle Scholar
  121. 121.
    Hou CH, Lin SH, Cheng J, Hsu F (2003) Antidiabetic dimeric guianolides and a lignan glycoside from Lactuca indica. J Nat Prod 66(5):625–629CrossRefPubMedGoogle Scholar
  122. 122.
    Judy WV, Hari SP, Stogsdill WW, Judy JS, Naguib YM, Passwater R (2003) Antidiabetic activity of a standardized extract (Glucosol) from Lagerstroemia speciosa leaves in Type II diabetics. A dose-dependence study. J Ethnopharmacol 87(1):115–117CrossRefPubMedGoogle Scholar
  123. 123.
    Inman DW, Luo J, Jolad SD, King SR, Cooper R (1999) Antihyperglicemic sesquiterpenes from Psacalium decompositum. J Nat Prod 62:1088–1092CrossRefPubMedGoogle Scholar
  124. 124.
    Yoshikawa M, Murakami T, Matsuda H (1996) Bioactive saponins and glycosides. II. Senegae Radix. (2): chemical structures, hypoglycemic activity, and ethanol absorption-inhibitory effect of E-senegasaponin c, Z-senegasaponin c, and Z-senegins II, III, and IV. Chem Pharm Bull (Tokyo) 44(7):1305–1313CrossRefGoogle Scholar
  125. 125.
    Kako M, Miura T, Nishiyama Y, Ichimaru M, Moriyasu M, Kato A (1997) Hypoglycemic activity of some triterpenoid glycosides. J Nat Prod 60(6):604–605CrossRefPubMedGoogle Scholar
  126. 126.
    Morikawa T, Kishi A, Pongpiriyadacha Y, Matsuda H, Yoshikawa M (2003) Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpenes and aldose reductase inhibitors form Salacia reticulata. J Nat Prod 55:1191–1196CrossRefGoogle Scholar
  127. 127.
    Matsuda H, Morikawa T, Ueda H, Yoshikawa M (2001) Medicinal food stuffs. XXVI. Inhibiors of aldose reductase and new triterpene and its oligo glycoside. Centellasapogenol A and Centellasponin A, from Centella asiatica (gotu kola). Heterocycl 55(8):1488–1504Google Scholar
  128. 128.
    Maurya R, Wazir V, Tyagi A, Kapil RS (1995) Clerodane diterpenoids from Tinispora cordifolia. Phytochem 38:659CrossRefGoogle Scholar
  129. 129.
    Parameshwar S, Srinivasan KK, Rao CM (2002) Oral antidiabetic activities of different extracts of Caesalpinia bonducella seed kernels. J Pharm Biol 40(8):590–595CrossRefGoogle Scholar
  130. 130.
    Castro JA, Bustos RZ, Espinoza GG, Olivo LAS (2012) Isoorientin reverts TNFα induced insulin resistance in adipocytes activating the insulin signaling pathway. Endocrinol 153(11):5222–5230CrossRefGoogle Scholar
  131. 131.
    Ndiaye M, Diatta W, Sy AN, Dièye AM, Faye B, Bassène E (2008) Antidiabetic properties of aqueous barks extract of Parinari excelsa in alloxan-induced diabetic rats. Fitoterapia 79:267–270CrossRefPubMedGoogle Scholar
  132. 132.
    Kawabata J, Mizuhata K, Sato E, Nishioka T, Aoyama Y, Kasai T (2003) 6-Hydroxyflavonoids as α-glucosidase inhibitors from marjoram (Origanum majorana) leaves. Biosci Biotechnol Biochem 67:445–447CrossRefPubMedGoogle Scholar
  133. 133.
    Nishioka T, Kawabata J, Aoyama Y (1998) Baicalein, an α-glucosidase inhibitor from Scutellaria baicalensis. J Nat Prod 61:1413–1415CrossRefPubMedGoogle Scholar
  134. 134.
    Lee SY, Kim KH, Lee IK, Lee KH, Choi SU, Lee KR (2012) A new flavonol glycoside from Hylomecon vernalis. Arch Pharm Res 35(3):415–421CrossRefPubMedGoogle Scholar
  135. 135.
    Narvaez-Mastache JM, Garduño-Ramírez ML, Alvarez L, Delgado G (2006) Antihyperglycemic activity and chemical constituents of Eysenhardtia platycarpa. J Nat Prod 69(12):1687–1691CrossRefPubMedGoogle Scholar
  136. 136.
    Yoo NH, Jang DS, Yoo JL, Lee YM, Kim YS, Cho JH, Kim JS (2008) Erigero flavanone, a flavanone derivative from the flowers of Erigeron annuus with protein glycation and aldose reductase inhibitory activity. J Nat Prod 71:713–715CrossRefPubMedGoogle Scholar
  137. 137.
    Shen ZF, Xie MZ (1985) The anti-hyperglycemic effect of kakonein and aspirin. Acta Pharm Sin B 20:863–865Google Scholar
  138. 138.
    Lee KT, Sohn IC, Kim DH, Choi JW, Kwon SH, Park HJ (2000) Hypoglycemic and hypolipidemic effects of tectorigenin and kaikasaponin III in the streptozotocin-induced diabetic rat and their antioxidant activity in vitro. Arch Pharm Res 23:461–466CrossRefPubMedGoogle Scholar
  139. 139.
    Kesari AN, Gupta RK, Singh SK, Diwakar S, Watal G (2006) Hypo-glycemic and antihyperglycemic activity of Aegle marmelos seed extract in normal and diabetic rats. J Ethnopharmacol 107:374–379CrossRefPubMedGoogle Scholar
  140. 140.
    Narendhirakannan RT, Subramanian S, Kandaswamy M (2007) Biochemical evaluation of antidiabetogenic properties of some commonly used Indian plants on streptozotocin induced diabetes in experimental rats. Clin Exp Pharmacol Physiol 33:1150–1157CrossRefGoogle Scholar
  141. 141.
    Hattori A, Yamada N, Nishikawa T, Fukuda H, Fujino T (2005) Antidiabetic effects of ajoene in genetically diabetic KK-A(y) mice. J Nutr Sci Vitaminol 51(5):382–384CrossRefPubMedGoogle Scholar
  142. 142.
    Liu CT, Wong PL, Lii CK, Hse H, Sheen LY (2006) Antidiabetic effect of garlic oil but not diallyl disulfide in rats with streptozotocin-induced diabetes. Food Chem Toxicol 44:1377–1384CrossRefPubMedGoogle Scholar
  143. 143.
    Eidi A, Eidi M, Esmaeili E (2006) Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin induced diabetic rats. Phytomed 13:624–629CrossRefGoogle Scholar
  144. 144.
    Zhao R, Li Q, Xiao B (2005) Effect of Lycium barbarum polysaccharide on the improvement of insulin resistance in NIDDM rats. Yakugaku Zasshi: J Pharm Soc Jpn 125:981–988CrossRefGoogle Scholar
  145. 145.
    Wu H, Guo H, Zhao R (2006) Effect of Lycium barbarum polysaccharide on the improvement of antioxidant ability and DNA damage in NIDDM rats. Yakugaku Zasshi J Pharm Soc Jpn 126:365–3671CrossRefGoogle Scholar
  146. 146.
    Babu PS, Prabuseenivasan S, Ignacimuthu S (2007) Cinnamaldehyde—a potential antidiabetic agent. Phytomedicine 14(1):15–22CrossRefGoogle Scholar
  147. 147.
    Ojewole JA (2005) Hypoglycemic and hypotensive effects of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract. J Clin Pharmacol 27:689–695Google Scholar
  148. 148.
    Ayodhya S, Kusum S, Anjali S (2010) Hypoglycaemic activity of different extracts of various herbal plants. Int J Res Ayurveda Pharm 1(1):212–224Google Scholar
  149. 149.
    Mohamed B, Ziyyat A, Mekhfi H, Tahri A, Legssyer A (2006) Medicinal plants with potential antidiabetic activity—a review of ten years of herbal medicine research (1990–2000). Int J Diabetes Metabol 14:1–25Google Scholar
  150. 150.
    Hong G, Yi-Na H, Bo G, Peng L, Chika I, Jun K (2000) Inhibitory effect on α-glucosidase by Adhatoda vasica Nees. Food Chem 108(3):965–972Google Scholar
  151. 151.
    Augusti KT, Mathew PT (1973) Effect of long term feeding of the aqueous extrats of onion (Allium cepa Linn.) and garlic (Allium sativum Linn.) on normal rats. Indian J Exp Biol 11:239–241PubMedGoogle Scholar
  152. 152.
    Tontisirin K, Nantel G, Bhattacharjee L (2002) Food-based strategies to meet the challenges of micronutrient malnutrition in the developing world. Proc Nutr Soc 61:243 – 50CrossRefPubMedGoogle Scholar
  153. 153.
    Adebooye OC, Vijayalakshmi R, Singh V (2008) Peroxidase activity, chlorophylls and antioxidant profile of two leaf vegetables (Solanum nigrum L. and Amaranthus cruentus L.) under six pretreatment methods before cooking. Int J Food Sci Technol 43:173–178CrossRefGoogle Scholar
  154. 154.
    Tuomilehto J, Schwarz P, Lindstrom J (2011) Long-term benefits from lifestyle interventions for type 2 diabetes prevention: time to expand the efforts. Diabetes Care 34(2):S210-S214PubMedCentralGoogle Scholar
  155. 155.
    Montonen J, Jarvinen R, Heliovaara M, Reunanen A (2005) Food consumption and the incidence of type II diabetes mellitus. Eur J Clin Nutr 59:441–448CrossRefPubMedGoogle Scholar
  156. 156.
    Montonen J, Knekt P, Jarvinen R, Aromaa A (2003) Whole-grain and fiber intake and the incidence of type 2 diabetes. Am J Clin Nutr 77:622–629CrossRefPubMedGoogle Scholar
  157. 157.
    de Munter JS, Hu FB, Spiegelman D, Franz M (2007) Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLOS Med 4:e261CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Ijarotimi OS, Nathaniel FT, Faramade OO (2015) Determination of chemical composition, nutritional quality and anti-diabetic potential of raw, blanched and fermented Wonderful Kola (Bucholzia coriacea) seed flour. J Human Nutri Food Sci 3(2):1060Google Scholar
  159. 159.
    Kunyanga CN, Imungi JK, Okoth MW, Biesalski HK, Vadivel V (2012) Total phenolic content, antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. LWT Food Sci Technol 45:269–276CrossRefGoogle Scholar
  160. 160.
    Adeniyi PO, Sanusi RA, Obatolu VA (2014) Effect of raw and cooked ginger (Zingiber officinale) extracts on serum insulin in normal and diabetic rats. Int J Clin Nutr 2(4):69–73Google Scholar
  161. 161.
    Ito Y, Mizukuchi A, Kise M, Aoto H, Yamamoto S, Yoshihara R, Yokoyama J (2005) Postprandial blood glucose and insulin responses to pre-germinated brown rice in healthy subjects. J Med Invest 2(3–4):159–164CrossRefGoogle Scholar
  162. 162.
    Imam MU, Azmi NH, Bhanger MI, Ismail N, Ismail M (2012) Antidiabetic properties of germinated brown rice: a systematic review. J Evid Based Complementary Altern Med 2012:1–12CrossRefGoogle Scholar
  163. 163.
    Lee SY, Park SL, Hwang JT, Yi SH, Nam YD, Lim SI (2012) Antidiabetic effect of Morinda citrifolia (Noni) fermented by Cheonggukjang in KK-Ay diabetic mice. J Evid Based Complementary Altern Med 2012:1–8Google Scholar
  164. 164.
    Yeap SK, Ali NM, Yusof HM, Alitheen NB, Beh BK, Ho WY, Koh SP, Long K (2012) Antihyperglycemic effects of fermented and non-fermented mung bean extracts on alloxan-induced-diabetic mice. J Biomed Biotechnol 2012:1–7CrossRefGoogle Scholar
  165. 165.
    Pathak M (2005) Soaked and germinated soybean seeds for blood sugar control: A preliminary study. Nat Prod Rad 4(5):405–409Google Scholar
  166. 166.
    McCue P, Kwon YI, Shetty K (2005) Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. Asia Pac J Clin Nutr 14(2):145–152PubMedGoogle Scholar
  167. 167.
    Honore SM, Cabrera WM, Genta SB, Sanchez SS (2012) Protective effect of yacon leaves decoction against early nephropathy in experimental diabetic rats. Food ChemToxicol 50:1704–1715CrossRefGoogle Scholar
  168. 168.
    Zhou B, Wang FF, Jang HD (2013) Enhanced antioxidant and antidiabetic activities of Barley and Wheat after soaking with tea catechin. Food Sci Biotechnol 22(6):1753–1761CrossRefGoogle Scholar
  169. 169.
    Vadivel V, Biesalski HK (2012) Total phenolic content, in vitro antioxidant activity and type II diabetes relevant enzyme inhibition properties of methanolic extract of traditionally processed under utilized food legume, Acacia nilotica (L.) Willd ex. Delile. Int Food Res J 19(2):593–601Google Scholar
  170. 170.
    Bede EN, Obi AU, Onuegbu N (2014) Anti-Diabetic effect of a herbal tea processed from ‘Nchanwu’ (Ocimum gratissimum) leaves on alloxan-induced diabetic rats. IOSR-JESTFT 8(8):36–40CrossRefGoogle Scholar
  171. 171.
    Eichler HG, Korn A, Gasic S, Pirson W, Businger J (1984) The effect of a new specific α-amylase inhibitor on post-prandial glucose and insulin excursions in normal subjects and type 2 (non-insulin-dependent) diabetic patients. Diabetologia 26(4):278–281CrossRefPubMedGoogle Scholar
  172. 172.
    Tarling CA, Woods K, Zhang R, Brastianos HC, Brayer GD, Andersen RJ, Withers SG (2008) The search for novel human pancreatic α-amylase inhibitors: high-throughput screening of terrestrial and marine natural product extracts. ChemBioChem 9:433–438CrossRefPubMedGoogle Scholar
  173. 173.
    Sudha P, Saikat H, Fayaj M, Smita Z, Hirekodathakallu T, Ameeta R (2015) Gedunin and azadiradione: human pancreatic alpha-amylase inhibiting limonoids from neem (Azadirachta indica) as anti-diabetic agents. PLOS One 10(10):e0140113CrossRefGoogle Scholar
  174. 174.
    Wang H, Du YJ, Song HC (2010) α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem 123:6–13CrossRefGoogle Scholar
  175. 175.
    Lordan S, Smyth T, Soler-Vila A, Stanton C, Ross RP (2013) The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem 141(3):2170–2176CrossRefPubMedGoogle Scholar
  176. 176.
    Hyun TK, Eom SH, Kim JS (2014) Molecular docking studies for discovery of plant-derived α-glucosidase inhibitors. POJ 7(3):166–170Google Scholar
  177. 177.
    Wulan DR, Utomo EP, Mahdi C (2015) Antidiabetic activity of Ruellia tuberosa L., role of α-amylase Inhibitor: In silico, In vitro., and In vivo approaches. Biochem Res Int 1–9Google Scholar
  178. 178.
    Ghosh S, More P, Derle A, Patil AB, Markad P, Asok A, Kumbhar N, Shaikh ML, Ramanamurthy B, Shinde VS, Dhavale D, Chopade BA (2014) Diosgenin from Dioscorea bulbifera: novel hit for treatment of type II diabetes mellitus with inhibitory activity against α-amylase and α-glucosidase. PLoS One 9(9):e106039CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Ghosh S, Rangan L (2014) Molecular docking and inhibition studies of α-amylase activity by labdane diterpenes from Alpinia nigra seeds. Medic Chem Res 23(11):4836–4852CrossRefGoogle Scholar
  180. 180.
    Ahmed D, Kumar V, Sharma M, Verma A (2014) Target guided isolation, in-vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia Lebbeck Benth. bark. BMC Complement Altern Med 14:155CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Wang Y, Li L, Yang M, Liu H, Boden H, Yang G (2011) Glucagon-like peptide-1 receptor agonist versus insulin in inadequately controlled patients with type 2 diabetes mellitus: a meta-analysis of clinical trials. Diabetes Obes Metab 13:972–981CrossRefPubMedGoogle Scholar
  182. 182.
    Bharti SK, Krishnan S, Kumar A, Rajak KK, Murari K, Bharti BK, Gupta AK (2013) Antidiabetic activity and molecular docking of fructo oligosaccharides produced by Aureobasidium pullulans in poloxamer-407-induced T2DM rats. Food Chem 136:813–821CrossRefPubMedGoogle Scholar
  183. 183.
    Geng Y, Lu ZM, Huang W, Xu HY, Shi JS, Xu ZH (2013) Bioassay-guided isolation of DPP-4 inhibitory fractions from extracts of submerged cultured of Inonotus obliquus. Molecules 18:1150–1161CrossRefPubMedGoogle Scholar
  184. 184.
    Gurudeeban S, Satyavani K, Ramanathan T, Balasubramanian T (2012) Antidiabetic effect of a black mangrove species Aegiceras corniculatum in alloxan-induced diabetic rats. J Adv Pharm Technol Res 3(1):52–56PubMedPubMedCentralGoogle Scholar
  185. 185.
    Purnomo Y, Soeatmadji DW, Sumitro SB, Widodo MA (2015) Anti-diabetic potential of Urena lobata leaf extract through inhibition of dipeptidyl peptidase IV activity. Asian Pac J Trop Biomed 5(8):645–649CrossRefGoogle Scholar
  186. 186.
    Oates PJ, Mylari BL (1999) Aldose reductase inhibitors: therapeutic implications for diabetic complications. Expert Opin Investig Drugs 8:2095–2119CrossRefPubMedGoogle Scholar
  187. 187.
    Wang Z, Ling B, Zhang R, Suo Y, Liu Y, Yu Z, Liu C (2009) Docking and molecular dynamics studies toward the binding of new natural phenolic marine inhibitors and aldose reductase. J Mol Graph Model 28:162–169CrossRefPubMedGoogle Scholar
  188. 188.
    Akileshwari C, Muthenna P, Nastasijevic B, Joksic G, Petrash JM, Reddy GB (2012) Inhibition of aldose reductase by Gentiana lutea extracts. Exp Diabetes Res 2012:1–8Google Scholar
  189. 189.
    Natarajan A, Sugumar S, Bitragunta S, Balasubramanyan N (2015) Molecular docking studies of (4Z, 12Z)- cyclopentadeca-4, 12-dienone from Grewia hirsute with some targets related to type 2 diabetes. BMC Complement Altern Med 15:1–8CrossRefGoogle Scholar
  190. 190.
    Madeswaran A, Umamaheswari M, Asokkumar K, Sivashanmugam T, Subhadradevi V, Jagannath P (2012) In silico docking studies of aldose reductase inhibitory activity of commercially available flavonoids. Bangladesh J Pharmacol 7:266–271Google Scholar
  191. 191.
    Manivannan A, Soundararajan P, Park YG, Sakkiah S, Jeong BR (2015) Binding mode investigation of polyphenols from Scrophularia targeting human aldose reductase using molecular docking and molecular dynamics stimulations. J Chem 1–12Google Scholar
  192. 192.
    Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435CrossRefPubMedGoogle Scholar
  193. 193.
    Kliewer SA, Xu HE, Lambert MH, Willson TM (2001) Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res 56:239–263CrossRefPubMedGoogle Scholar
  194. 194.
    Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK (2006) International Union of Pharmacology. LXI. Peroxisome proliferator activated receptors. Pharmacol Rev 58:726–741CrossRefPubMedGoogle Scholar
  195. 195.
    Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPAR-gamma. Annu Rev Biochem 77:289–312CrossRefPubMedGoogle Scholar
  196. 196.
    Heikkinen S, Auwerx J, Argmann CA (2007) PPAR-gamma in human and mouse physiology. Biochim Biophys Acta 1771:999–1013CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Medina-Gomez G, Gray SL, Yetukuri L, Shimomura K, Virtue S, Campbell M (2007) PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLos Genet 3:e64CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Kramer D, Shapiro R, Adler A, Bush E, Rondinone CM (2001) Insulin-sensitizing effect of rosiglitazone (BRL-49653) by regulation of glucose transporters in muscle and fat of Zucker rats. Metabolism 50:1294–1300CrossRefPubMedGoogle Scholar
  199. 199.
    Cabrero A, Laguna JC, Vazquez M (2002) Peroxisome proliferator-activated receptors and the control of inflammation. Curr Drug Targets Inflamm Allergy 1:243–248CrossRefPubMedGoogle Scholar
  200. 200.
    Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y (2001) PPAR-gamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50:2094–2099CrossRefPubMedGoogle Scholar
  201. 201.
    Lehrke M, Lazar MA (2005) The many faces of PPAR gamma. Cell 123:993–999CrossRefPubMedGoogle Scholar
  202. 202.
    Kim HI, Ahn YH (2004) Role of peroxisome proliferator-activated receptor-gamma in the glucose-sensing apparatus of liver and beta-cells. Diabetes 53(1):S60–S65Google Scholar
  203. 203.
    Shin DW, Kim SN, Lee SM, Lee W, Song MJ, Park SM (2009) (−)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem Pharmacol 77:125–133CrossRefPubMedGoogle Scholar
  204. 204.
    Kim SN, Cho HY, Lee W, Park GM, Shin WS, Kim YK (2008) Sargaquinoic acid and sargahydroquinoic acid from Sargassum yezoense stimulate adipocyte differentiation through PPARa/c activation in 3T3-L1 cells. FEBS Lett 582:3465–3472CrossRefPubMedGoogle Scholar
  205. 205.
    Fang XK, Gao J, Zhu DN (2008) Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci 82(11–12):615–622CrossRefPubMedGoogle Scholar
  206. 206.
    Weidner C, de Groot JC, Prasad A, Freiwald A, Quedenau C, Kliem M, Witzke A, Kodelja V, Han CT, Giegold S, Baumann M, Klebl B, Siems K, Muller-Kuhrt L, Schurmann A, Schuler R, Pfeiffer AFH, Schroeder FC, Bussow K, Sauer S (2012) Amorfrutins are potent antidiabetic dietary natural products. PNAS 109(19):7257–7262CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Atanasov AG, Wang JN, Gu SP, Bu J, Kramer MP, Baumgartner L, Fakhrudin N, Ladurner A, Malainer C, Vuorinen A, Noha SM, Schwaiger S, Rollinger JM, Schuster D, Stuppner H, Dirsch VM, Heiss EH (2013) Honokiol: A non-adipogenic PPARγ agonist from nature. Biochim Biophys Acta 1830:4813–4819CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Weidner C, Wowro SJ, Rousseau M, Freiwald A, Kodelja V, Abdel-Aziz H, Kelber O, Sauer S (2013) Antidiabetic effects of chamomile flowers extract in obese mice through transcriptional stimulation of nutrient sensors of the peroxisome proliferator-activated receptor (PPAR) family. PLoS One 8(11):e80335CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Awaluddin F, Jaya Putra A, Supandi M (2014) Molecular docking studies of flavonoids of Noni fruit (Morinda citrifolia L.) to peroxisome proliferator-activated receptor-gamma (PPARγ). In: 3rd International Conference on Computation for Science and Technology (ICCST-3), Bali, pp 95–99Google Scholar
  210. 210.
    Coughlan KA, Valentine RJ, Ruderman NB, Saha AK (2014) AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 7:241–253PubMedPubMedCentralGoogle Scholar
  211. 211.
    Miyamot L (2016) Can food factors provide us with the similar beneficial effects of physical exercise? Food Sci Biotechnol 25(S):9–13CrossRefGoogle Scholar
  212. 212.
    Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55:2256–2264CrossRefPubMedGoogle Scholar
  213. 213.
    Turner N, Li JY, Gosby A, To SWC, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, Hu LH, Li J, Ye JM (2008) Berberine and its more biologically available derivative, Dihydroberberine, inhibit mitochondrial respiratory complex I. A mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 57:1414–1418CrossRefPubMedGoogle Scholar
  214. 214.
    Murase T, Misawa K, Haramizu S, Hase T (2009) Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochem Pharmacol 78(1):78–84CrossRefPubMedGoogle Scholar
  215. 215.
    Egawa T, Hamada T, Kameda N, Karaike K, Ma X, Masuda S, Iwanaka N, Hayashi VT (2009) Caffeine acutely activates 5′adenosine monophosphate-activated protein kinase and increases insulin-independent glucose transport in rat skeletal muscles. Metabolism 58(11):1609–1617CrossRefPubMedGoogle Scholar
  216. 216.
    Tsuda S, Egawa T, Kitani K, Oshima R, Ma X, Hayashi T (2015) Caffeine and contraction synergistically stimulate 50-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. Physiol Rep 3(10):1–12CrossRefGoogle Scholar
  217. 217.
    Jensen TE, Rose AJ, Hellsten Y, Wojtaszewski JFP, Richter EA (2007) Caffeine-induced Ca2+ release increases AMPK-dependent glucose uptake in rodent soleus muscle. Am J Physiol Endocrinol Metab 293:E286–E292CrossRefGoogle Scholar
  218. 218.
    Birnbaum MJ (1989) Identification of a novel gene encoding an insulin responsive glucose transporter protein. Cell 57:305–315CrossRefPubMedGoogle Scholar
  219. 219.
    Singh V, Singh SP, Singh M, Gupta AK, Kumar A (2015) Combined potentiating action of phytochemical(s) from Cinnamomum tamala and Aloe vera for their anti-diabetic and insulinomimetic effect using In vivo rat and In vitro. NIH/3T3 cell culture system. Appl Biochem Biotechnol 175:2542–2563CrossRefPubMedGoogle Scholar
  220. 220.
    Vishnu Prasad CN, Anjana T, Banerji A, Gopalakrishna pillai A (2010) Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett 584:531–536CrossRefGoogle Scholar
  221. 221.
    Ueda M, Nishiumi S, Nagayasu H, Fukuda I, Yoshida K, Ashida H (2008) Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle. Biochem Biophys Res Commun 377:286–290CrossRefPubMedGoogle Scholar
  222. 222.
    Narayan KMV, Zhang P, Kanaya AM, Williams DE, Engelgau MM, Imperatore G, Ramachandran A (2006) Diabetes: the pandemic and potential solutions. Disease control priorities in developing countries, 2nd edn. Oxford University Press, New York, pp 591–604Google Scholar
  223. 223.
    Gunn J, Che CT, Farnsworth N (2013) Diabetes and natural products. Watson R, Preedy B (eds) Bioactive food as dietary interventions for diabetes, pp 381–394. doi: 10.1016/B978-0-12-397153-1.00042-1
  224. 224.
    World Health Organization (WHO) (1980) Expert committee on diabetes mellitus: second report. World Health Organ Tech Rep Ser 646:1–80Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of BiochemistryCSIR–Central Food Technological Research InstituteMysoreIndia

Personalised recommendations