European Journal of Nutrition

, Volume 57, Issue 7, pp 2607–2619 | Cite as

High-dose vitamin D3 supplementation decreases the number of colonic CD103+ dendritic cells in healthy subjects

  • Nina Friis BakEmail author
  • M. Bendix
  • S. Hald
  • L. Reinert
  • M. K. Magnusson
  • J. Agnholt
Original Contribution



Vitamin D may induce tolerance in the intestinal immune system and has been shown to regulate the phenotype of tolerogenic intestinal dendritic cells (DCs) in vitro. It is unknown whether vitamin D supplementation affects human intestinal DCs in vivo, and we aimed to investigate the tolerability and effect on intestinal CD103+DCs of high-dose vitamin D3 treatment in healthy subjects.


Ten healthy subjects received a total of 480,000 IU oral vitamin D3 over 15 days and colonic biopsies were obtained before and after intervention by endoscopy. Lamina propria mononuclear cells (LPMCs) were isolated from the biopsies, stained with DC surface markers and analysed with flow cytometry. Snap-frozen biopsies were analysed with qPCR for DC and regulatory T cell-related genes.


No hypercalcemia or other adverse events occurred in the test subjects. Vitamin D decreased the number of CD103+ DCs among LPMCs (p = 0.006). Furthermore, vitamin D induced mRNA expression of TGF-β (p = 0.048), TNF-α (p = 0.006) and PD-L1 (p = 0.02) and tended to induce IL-10 expression (p = 0.06). Multivariate factor analysis discriminated between pre- and post-vitamin D supplementation with a combined increased qPCR expression of PD1, PD-L1, TGF-β, IL-10, CD80, CD86, FOXP3, NFATc2 and cathelicidin.


High-dose vitamin D supplementation is well tolerated by healthy subjects and has a direct effect on the CD103+ DCs, local cytokine and surface marker mRNA expression in the colonic mucosa, suggestive of a shift towards a more tolerogenic milieu.


Vitamin D CD103+ dendritic cells Intestinal immune system PD-L1 



We thank laboratory technicians Mette Mejlby Hansen and Rikke Andersen for expert laboratory technical support. Financial support was granted by the Knud and Edith Eriksen Memorial Fund.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

394_2017_1531_MOESM1_ESM.tiff (4.3 mb)
Supplementary figure S1 DC’s (HLA-DR+, CD11c+, CD14, blue colour) backgated to the live cells gate, defined as 7AAD (TIFF 4448 kb)
394_2017_1531_MOESM2_ESM.pdf (85 kb)
Supplementary Table S1 List of TaqMan Gene Expression Assays used in the experiment. All products from Applied Biosystems, Life Technologies, Carlsbad, California, USA. The assay ID provides information on NCBI reference sequence number, amplicon length and location of each primer by exon or intron. All TaqMan Gene Expression Assays have amplification efficiencies of 100% ± 10% and will amplify the intended target at least 10 Cq earlier than the gene with the closest sequence homology. Supplementary Table S2 List of genes analysed by qPCR. Medians are listed for baseline normalised Cq-values and day 15 normalised Cq-values. IFNG is excluded because of too many missing values. P-value is given for paired non-parametric analyses (Wilcoxon matched-pairs signed-rank test) (PDF 84 kb)


  1. 1.
    The Danish National Board of Health. Brot C, Darsoe P (2010) Prevention, diagnostics and treatment of vitamin D deficiency (Danish)Google Scholar
  2. 2.
    Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin D, Calcium (2011) Dietary reference intakes for calcium and vitamin D. In: Ross AC, Taylor CL, Yaktine AL, Del Valle HB (eds) Dietary reference intakes for calcium and vitamin D. National Academies Press (US), National Academy of Sciences, Washington (DC)Google Scholar
  3. 3.
    Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocr Metab 96(7):1911–1930. doi: 10.1210/jc.2011-0385 CrossRefPubMedGoogle Scholar
  4. 4.
    Barbara Prietl SP, Wolf Michael, Tomaschitz Andreas, Obermayer-Pietsch Barbara, Graninger Winfried, Pieber Thomas R (2010) Vitamin D supplementation and regulatory T cells in apparently healthy subjects: vitamin D treatment for autoimmune diseases? Isr Med Assoc J 12(3):136–139PubMedGoogle Scholar
  5. 5.
    Prietl B, Treiber G, Mader JK, Hoeller E, Wolf M, Pilz S, Graninger WB, Obermayer-Pietsch BM, Pieber TR (2014) High-dose cholecalciferol supplementation significantly increases peripheral CD4(+) Tregs in healthy adults without negatively affecting the frequency of other immune cells. Eur J Nutr 53(3):751–759. doi: 10.1007/s00394-013-0579-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Ojaimi S, Skinner NA, Strauss BJ, Sundararajan V, Woolley I, Visvanathan K (2013) Vitamin D deficiency impacts on expression of toll-like receptor-2 and cytokine profile: a pilot study. J Transl Med 11:176. doi: 10.1186/1479-5876-11-176 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wagner D, Dias AG, Schnabl K, Van der Kwast T, Vieth R (2012) Determination of 1,25-dihydroxyvitamin D concentrations in human colon tissues and matched serum samples. Anticancer Res 32(1):259–263PubMedGoogle Scholar
  8. 8.
    Bashir M, Prietl B, Tauschmann M, Mautner SI, Kump PK, Treiber G, Wurm P, Gorkiewicz G, Hogenauer C, Pieber TR (2016) Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur J Nutr 55(4):1479–1489. doi: 10.1007/s00394-015-0966-2 CrossRefPubMedGoogle Scholar
  9. 9.
    Airi Jussila LJV, Salomaa V, Mäki J, Jula A, Färkkilä MA (2013) High and increasing prevalence of inflammatory bowel disease in Finland with a clear North-South difference. J Crohn’s Colitis 7:e256–e262CrossRefGoogle Scholar
  10. 10.
    Khalili H, Huang ES, Ananthakrishnan AN, Higuchi L, Richter JM, Fuchs CS, Chan AT (2012) Geographical variation and incidence of inflammatory bowel disease among US women. Gut 61(12):1686–1692. doi: 10.1136/gutjnl-2011-301574 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shivananda S, Lennard-Jones J, Logan R, Fear N, Price A, Carpenter L, van Blankenstein M (1996) Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? Results of the European collaborative study on inflammatory bowel disease (EC-IBD). Gut 39:690–697CrossRefGoogle Scholar
  12. 12.
    Jorrit Opstelten SC, Hart A, van S F, Siersema PD, Lentjes E, Khaw K-T, Luben R, Key T, Boeing H, Bergmann MM, Overvad K, Palli D, Masala G, Racine A, Carbonnel F, Boutron-Ruault M-C, Tjønneland A, Olsen A, Andersen V, Kaaks R, Kühn T, Tumino R, Trichopoulou A, Verschuren M, Witteman B, Oldenburg B (2017) Prediagnostic serum vitamin D levels and risk of inflammatory bowel disease: a pan-European, Nested case–control study. Gastroenterology 152:S159Google Scholar
  13. 13.
    Jorgensen SP, Agnholt J, Glerup H, Lyhne S, Villadsen GE, Hvas CL, Bartels LE, Kelsen J, Christensen LA, Dahlerup JF (2010) Clinical trial: vitamin D3 treatment in Crohn’s disease—a randomized double-blind placebo-controlled study. Aliment Pharmacol Ther 32(3):377–383. doi: 10.1111/j.1365-2036.2010.04355.x CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Raftery T, Martineau AR, Greiller CL, Ghosh S, McNamara D, Bennett K, Meddings J, O’Sullivan M (2015) Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn’s disease: results from a randomised double-blind placebo-controlled study. United Eur Gastroenterol J 3(3):294–302. doi: 10.1177/2050640615572176 CrossRefGoogle Scholar
  15. 15.
    Ooi JH, Li Y, Rogers CJ, Cantorna MT (2013) Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. J Nutr 143(10):1679–1686. doi: 10.3945/jn.113.180794 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cantorna MT, Munsick C, Bemiss C, Mahon BD (2000) 1,25-dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr 130(11):2648–2652CrossRefGoogle Scholar
  17. 17.
    Penna G, Adorini L (2000) 1 Alpha, 25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164(5):2405–2411CrossRefGoogle Scholar
  18. 18.
    Bartels LE, Hvas CL, Agnholt J, Dahlerup JF, Agger R (2010) Human dendritic cell antigen presentation and chemotaxis are inhibited by intrinsic 25-hydroxy vitamin D activation. Int Immunopharmacol 10(8):922–928. doi: 10.1016/j.intimp.2010.05.003 CrossRefPubMedGoogle Scholar
  19. 19.
    Louisa E, Jeffery AMW, Qureshi OS, Hou TZ, Gardner D, Briggs Z, Kaur S, Raza K, Sansom DM (2012) Availability of 25-hydroxyvitamin D3 to APCs controls the balance between regulatory and inflammatory T cell responses. J Immunol 189:5155–5164CrossRefGoogle Scholar
  20. 20.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252. doi: 10.1038/32588 CrossRefPubMedGoogle Scholar
  21. 21.
    Hewison M, Freeman L, Hughes SV, Evans KN, Bland R, Eliopoulos AG, Kilby MD, Moss PA, Chakraverty R (2003) Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J Immunol 170(11):5382–5390CrossRefGoogle Scholar
  22. 22.
    Hewison M, Burke F, Evans KN, Lammas DA, Sansom DM, Liu P, Modlin RL, Adams JS (2007) Extra-renal 25-hydroxyvitamin D3-1alpha-hydroxylase in human health and disease. J Steroid Biochem Mol Biol 103(3–5):316–321. doi: 10.1016/j.jsbmb.2006.12.078 CrossRefPubMedGoogle Scholar
  23. 23.
    Sochorova K, Budinsky V, Rozkova D, Tobiasova Z, Dusilova-Sulkova S, Spisek R, Bartunkova J (2009) Paricalcitol (19-nor-1,25-dihydroxyvitamin D2) and calcitriol (1,25-dihydroxyvitamin D3) exert potent immunomodulatory effects on dendritic cells and inhibit induction of antigen-specific T cells. Clin Immunol 133(1):69–77. doi: 10.1016/j.clim.2009.06.011 CrossRefPubMedGoogle Scholar
  24. 24.
    Unger WW, Laban S, Kleijwegt FS, van der Slik AR, Roep BO (2009) Induction of Treg by monocyte-derived DC modulated by vitamin D3 or dexamethasone: differential role for PD-L1. Eur J Immunol 39(11):3147–3159. doi: 10.1002/eji.200839103 CrossRefPubMedGoogle Scholar
  25. 25.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704CrossRefGoogle Scholar
  26. 26.
    Bartels LE, Bendix M, Hvas CL, Jorgensen SP, Agnholt J, Agger R, Dahlerup JF (2014) Oral vitamin D3 supplementation reduces monocyte-derived dendritic cell maturation and cytokine production in Crohn’s disease patients. Inflammopharmacology 22(2):95–103. doi: 10.1007/s10787-013-0197-1 CrossRefPubMedGoogle Scholar
  27. 27.
    Mann ER, Bernardo D, English NR, Landy J, Al-Hassi HO, Peake ST, Man R, Elliott TR, Spranger H, Lee GH, Parian A, Brant SR, Lazarev M, Hart AL, Li X, Knight SC (2015) Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum. Gut. doi: 10.1136/gutjnl-2014-307916 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204(8):1757–1764. doi: 10.1084/jem.20070590 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bakdash G, Vogelpoel LT, van Capel TM, Kapsenberg ML, de Jong EC (2015) Retinoic acid primes human dendritic cells to induce gut-homing, IL-10-producing regulatory T cells. Mucosal Immunol 8(2):265–278. doi: 10.1038/mi.2014.64 CrossRefPubMedGoogle Scholar
  30. 30.
    Bruce D, Yu S, Ooi JH, Cantorna MT (2011) Converging pathways lead to overproduction of IL-17 in the absence of vitamin D signaling. Int Immunol 23(8):519–528. doi: 10.1093/intimm/dxr045 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J, Bissonnette M, Li YC (2008) Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastroenterol 294:G208–G216Google Scholar
  32. 32.
    Chen SW, Wang PY, Zhu J, Chen GW, Zhang JL, Chen ZY, Zuo S, Liu YC, Pan YS (2014) Protective effect of 1,25-dihydroxyvitamin D3 on lipopolysaccharide-induced intestinal epithelial tight junction injury in Caco-2 cell monolayers. Inflammation. doi: 10.1007/s10753-014-0041-9 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Holmén N, Lundgren A, Lundin S, Bergin AM, Rudin A, Sjovall H, Ohman L (2006) Functional CD4+CD25high regulatory T cells are enriched in the colonic mucosa of patients with active ulcerative colitis and increase with disease activity. Inflamm Bowel Dis 12(6):447–456CrossRefGoogle Scholar
  34. 34.
    Tung JW, Heydari K, Tirouvanziam R, Sahaf B, Parks DR, Herzenberg LA, Herzenberg LA (2007) Modern flow cytometry: a practical approach. Clin Lab Med 27(3):453–468. doi: 10.1016/j.cll.2007.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Magnusson MK, Brynjolfsson SF, Dige A, Uronen-Hansson H, Borjesson LG, Bengtsson JL, Gudjonsson S, Ohman L, Agnholt J, Sjovall H, Agace WW, Wick MJ (2016) Macrophage and dendritic cell subsets in IBD: ALDH(+) cells are reduced in colon tissue of patients with ulcerative colitis regardless of inflammation. Mucosal Immunol 9(1):171–182. doi: 10.1038/mi.2015.48 CrossRefPubMedGoogle Scholar
  36. 36.
    Dige A, Magnusson MK, Ohman L, Hvas CL, Kelsen J, Wick MJ, Agnholt J (2016) Reduced numbers of mucosal DR(int) macrophages and increased numbers of CD103(+) dendritic cells during anti-TNF-alpha treatment in patients with Crohn’s disease. Scand J Gastroenterol 51(6):692–699. doi: 10.3109/00365521.2015.1134649 CrossRefPubMedGoogle Scholar
  37. 37.
    Invitrogen (2015) SuperScript™ VILO™ Master Mix Product Information SheetGoogle Scholar
  38. 38.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):Research0034CrossRefGoogle Scholar
  39. 39.
    Michael F, Holick MD, Ph D (2007) Vitamin D deficiency. N Engl J Med 357:266–281CrossRefGoogle Scholar
  40. 40.
    Lehmann U, Hirche F, Stangl GI, Hinz K, Westphal S, Dierkes J (2013) Bioavailability of vitamin D(2) and D(3) in healthy volunteers, a randomized placebo-controlled trial. J Clin Endocrinol Metab 98(11):4339–4345. doi: 10.1210/jc.2012-4287 CrossRefPubMedGoogle Scholar
  41. 41.
    Yusupov E, Li-Ng M, Pollack S, Yeh JK, Mikhail M, Aloia JF (2010) Vitamin D and serum cytokines in a randomized clinical trial. Int J Endocrinol. doi: 10.1155/2010/305054 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Das M, Tomar N, Sreenivas V, Gupta N, Goswami R (2014) Effect of vitamin D supplementation on cathelicidin, IFN-gamma, IL-4 and Th1/Th2 transcription factors in young healthy females. Eur J Clin Nutr 68(3):338–343. doi: 10.1038/ejcn.2013.268 CrossRefPubMedGoogle Scholar
  43. 43.
    Veugelers PJ, Ekwaru JP (2014) A statistical error in the estimation of the recommended dietary allowance for vitamin D. Nutrients 6(10):4472–4475. doi: 10.3390/nu6104472 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Heaney R, Garland C, Baggerly C, French C, Gorham E (2015) Letter to Veugelers, P.J. and Ekwaru, J.P., A statistical error in the estimation of the recommended dietary allowance for vitamin D. Nutrients 7(3):1688–1690. doi: 10.3390/nu7031688 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Spedding S, Vanlint S, Morris H, Scragg R (2013) Does vitamin D sufficiency equate to a single serum 25-hydroxyvitamin D level or are different levels required for non-skeletal diseases? Nutrients 5(12):5127–5139. doi: 10.3390/nu5125127 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Vieth R (2011) Why the minimum desirable serum 25-hydroxyvitamin D level should be 75 nmol/L (30 ng/ml). Best Pract Res Clin Endocrinol 25(4):681–691. doi: 10.1016/j.beem.2011.06.009 CrossRefGoogle Scholar
  47. 47.
    Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, Staehelin HB, Meyer OW, Theiler R, Dick W, Willett WC, Egli A (2016) Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med 176(2):175–183. doi: 10.1001/jamainternmed.2015.7148 CrossRefPubMedGoogle Scholar
  48. 48.
    Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, Nicholson GC (2010) Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 303(18):1815–1822. doi: 10.1001/jama.2010.594 CrossRefPubMedGoogle Scholar
  49. 49.
    Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, Berg PL, Davidsson T, Powrie F, Johansson-Lindbom B, Agace WW (2008) Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med 205(9):2139–2149. doi: 10.1084/jem.20080414 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Scott CL, Aumeunier AM, Mowat AM (2011) Intestinal CD103 + dendritic cells: master regulators of tolerance? Trends Immunol 32(9):412–419. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  51. 51.
    Maldonado RA, von Andrian UH (2010) How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol 108:111–165. doi: 10.1016/b978-0-12-380995-7.00004-5 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Shiokawa A, Kotaki R, Takano T, Nakajima-Adachi H, Hachimura S (2017) Mesenteric lymph node CD11b CD103+ PD-L1High dendritic cells highly induce regulatory T cells. Immunology. doi: 10.1111/imm.12747 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ (1994) Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J Exp Med 180(2):631–640CrossRefGoogle Scholar
  54. 54.
    Zakharova M, Ziegler HK (2005) Paradoxical anti-inflammatory actions of TNF-alpha: inhibition of IL-12 and IL-23 via TNF receptor 1 in macrophages and dendritic cells. J Immunol 175(8):5024–5033CrossRefGoogle Scholar
  55. 55.
    Dionne S, Calderon MR, White JH, Memari B, Elimrani I, Adelson B, Piccirillo C, Seidman EG (2014) Differential effect of vitamin D on NOD2- and TLR-induced cytokines in Crohn’s disease. Mucosal Immunol. doi: 10.1038/mi.2014.30 CrossRefPubMedGoogle Scholar
  56. 56.
    Yang W, Chen PW, Li H, Alizadeh H, Niederkorn JY (2008) PD-L1: PD-1 interaction contributes to the functional suppression of T-cell responses to human uveal melanoma cells in vitro. Investig Ophthalmol Vis Sci 49(6):2518–2525. doi: 10.1167/iovs.07-1606 CrossRefGoogle Scholar
  57. 57.
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034CrossRefGoogle Scholar
  58. 58.
    Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ (2003) Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr 77(1):204–210CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Hepatology and GastroenterologyAarhus University HospitalAarhus CDenmark
  2. 2.Department of BiomedicineAarhus UniversityAarhus CDenmark
  3. 3.Department of Microbiology and Immunology, Institute for BiomedicineUniversity of GothenburgGothenburgSweden

Personalised recommendations