Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats

  • Wannipa Tunapong
  • Nattayaporn Apaijai
  • Sakawdaurn Yasom
  • Pongpan Tanajak
  • Keerati Wanchai
  • Titikorn Chunchai
  • Sasiwan Kerdphoo
  • Sathima Eaimworawuthikul
  • Parameth Thiennimitr
  • Anchalee Pongchaidecha
  • Anusorn Lungkaphin
  • Wasana Pratchayasakul
  • Siriporn C. Chattipakorn
  • Nipon Chattipakorn
Original Contribution



In metabolic syndrome, the composition of gut microbiota has been disrupted, and is associated with left ventricular (LV) dysfunction. Several types of prebiotics, probiotics, and synbiotics have been shown to exert cardioprotection by restoring gut microbiota from dysbiosis and reducing systemic inflammation. However, the effects of prebiotics such as xylooligosaccharides (XOS); probiotics such as Lactobacillus paracasei STII01 HP4, and synbiotics on metabolic and LV function in obese insulin-resistant rats have not been investigated. In this study, we hypothesized that prebiotics and probiotics improve metabolic parameters, heart rate variability (HRV), blood pressure (BP), and LV function by attenuating cardiac mitochondrial dysfunction, systemic inflammation, and oxidative stress, and that synbiotics provide greater efficacy than a single regimen in obese insulin resistance.


Rats were fed with either normal diet or high-fat diet (HFD) for 12 weeks and then rats in each dietary group were randomly subdivided into four subgroups to receive either a vehicle, prebiotics, probiotics, or synbiotics for another 12 weeks. Metabolic parameters, BP, HRV, LV function, cardiac mitochondrial function, systemic inflammation, and oxidative stress were determined.


HFD-fed rats had obese insulin resistance with markedly increased systemic inflammatory marker [Serum LPS; ND; 0.6 ± 0.1 EU/ml vs. HFD; 5.7 ± 1.2 EU/ml (p < 0.05)], depressed HRV, and increased BP and LV dysfunction [%ejection fraction; ND; 93 ± 2% vs. HFD; 83 ± 2% (p < 0.05)]. Prebiotics, probiotics, and synbiotics attenuated insulin resistance by improving insulin sensitivity and lipid profiles. All interventions also improved HRV, BP, LV function [%ejection fraction; HFV; 81 ± 2% vs. HFPE; 93 ± 3%, HFPO; 92 ± 1%, HFC; 92 ± 2% (p < 0.05)] by attenuating mitochondrial dysfunction, oxidative stress, and systemic inflammation in obese insulin-resistant rats.


Prebiotics, probiotics, and synbiotics shared similar efficacy in reducing insulin resistance and LV dysfunction in obese insulin-resistant rats.


Prebiotics Probiotics Synbiotics Obese insulin resistance Cardiac mitochondria Systemic inflammation 



This work was supported by Thailand Research Fund Grants RTA (SCC), TRG6080005 (NA), RSA5780029 (AL); a NSTDA Research Chair Grant from the National Science and Technology Development Agency Thailand (NC), and Chiang Mai University Center of Excellence Award (NC). The authors would also like to thank Ms. Gabrielle Metzler for her editorial assistance.

Compliance with ethical standards

Conflicts of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH, American Heart A, Obesity Committee of the Council on Nutrition PA, Metabolism (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113(6):898–918CrossRefGoogle Scholar
  2. 2.
    Cheng MC, Tsai TY, Pan TM (2015) Anti-obesity activity of the water extract of Lactobacillus paracasei subsp. paracasei NTU 101 fermented soy milk products. Food Funct 6(11):3522–3530CrossRefGoogle Scholar
  3. 3.
    Bastien M, Poirier P, Lemieux I, Despres JP (2014) Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovas Dis 56(4):369–381CrossRefGoogle Scholar
  4. 4.
    de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299(2):G440–448CrossRefGoogle Scholar
  5. 5.
    Kim KA, Gu W, Lee IA, Joh EH, Kim DH (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 7(10):e47713CrossRefGoogle Scholar
  6. 6.
    Schulz MD, Atay C, Heringer J, Romrig FK, Schwitalla S, Aydin B, Ziegler PK, Varga J, Reindl W, Pommerenke C, Salinas-Riester G, Bock A, Alpert C, Blaut M, Polson SC, Brandl L, Kirchner T, Greten FR, Polson SW, Arkan MC (2014) High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514(7523):508–512CrossRefGoogle Scholar
  7. 7.
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481CrossRefGoogle Scholar
  8. 8.
    Supakul L, Pintana H, Apaijai N, Chattipakorn S, Shinlapawittayatorn K, Chattipakorn N (2014) Protective effects of garlic extract on cardiac function, heart rate variability, and cardiac mitochondria in obese insulin-resistant rats. Eur J Nutr 53(3):919–928CrossRefGoogle Scholar
  9. 9.
    Tanajak P, Sa-Nguanmoo P, Wang X, Liang G, Li X, Jiang C, Chattipakorn SC, Chattipakorn N (2016) Fibroblast growth factor 21 (FGF21) therapy attenuates left ventricular dysfunction and metabolic disturbance by improving FGF21 sensitivity, cardiac mitochondrial redox homoeostasis and structural changes in pre-diabetic rats. Acta Physiol (Oxf) 217(4):287–299CrossRefGoogle Scholar
  10. 10.
    Wu CC, Weng WL, Lai WL, Tsai HP, Liu WH, Lee MH, Tsai YC (2015) Effect of Lactobacillus plantarum Strain K21 on High-Fat Diet-Fed Obese Mice. Evid Based Complement Alternat Med 2015:391767Google Scholar
  11. 11.
    Cluny NL, Eller LK, Keenan CM, Reimer RA, Sharkey KA (2015) Interactive effects of oligofructose and obesity predisposition on gut hormones and microbiota in diet-induced obese rats. Obesity 23(4):769–778CrossRefGoogle Scholar
  12. 12.
    Park DY, Ahn YT, Park SH, Huh CS, Yoo SR, Yu R, Sung MK, McGregor RA, Choi MS (2013) Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8(3):e59470CrossRefGoogle Scholar
  13. 13.
    Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4):1417–1435CrossRefGoogle Scholar
  14. 14.
    Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330–339CrossRefGoogle Scholar
  15. 15.
    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110(22):9066–9071CrossRefGoogle Scholar
  16. 16.
    Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, van-Hylckama Vlieg JE, Strissel K, Zhao L, Obin M, Shen J (2015) Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 9(1):1–15CrossRefGoogle Scholar
  17. 17.
    Lai CH, Tsai CC, Kuo WW, Ho TJ, Day CH, Pai PY, Chung LC, Huang CC, Wang HF, Liao PH, Huang CY (2016) Multi-strain probiotics inhibit cardiac myopathies and autophagy to prevent heart injury in high-fat diet-fed rats. Int J Med Sci 13(4):277–285CrossRefGoogle Scholar
  18. 18.
    Wang HF, Lin PP, Chen CH, Yeh YL, Huang CC, Huang CY, Tsai CC (2015) Effects of lactic acid bacteria on cardiac apoptosis are mediated by activation of the phosphatidylinositol-3 kinase/AKT survival-signalling pathway in rats fed a high-fat diet. Int J Med Sci 35(2):460–470Google Scholar
  19. 19.
    Ting WJ, Kuo WW, Kuo CH, Yeh YL, Shen CY, Chen YH, Ho TJ, Viswanadha VP, Chen YH, Huang CY (2015) Supplementary heat-killed Lactobacillus reuteri GMNL-263 ameliorates hyperlipidaemic and cardiac apoptosis in high-fat diet-fed hamsters to maintain cardiovascular function. Br J Nutr 114(5):706–712CrossRefGoogle Scholar
  20. 20.
    Apaijai N, Inthachai T, Lekawanvijit S, Chattipakorn SC, Chattipakorn N (2016) Effects of dipeptidyl peptidase-4 inhibitor in insulin-resistant rats with myocardial infarction. J Endocrinol 229(3):245–258CrossRefGoogle Scholar
  21. 21.
    Imaizumi K, Nakatsu Y, Sato M, Sedarnawati Y, Sugano M (1991) Effects of xylooligosaccharides on blood glucose, serum and liver lipids and cecum short-chain fatty acids in diabetic rats. Agric Biol Chem 55(1):199–205Google Scholar
  22. 22.
    Yamamoto S, Pattananandecha T, Sirilun S, Sivamaruthi BS, Peerajan S, Chaiyasut C (2016) Evaluation of cryoprotective potential of Jerusalem artichoke’ inulin during freeze-drying and storage of Lactobacillus paracasei HII01. J Pure Appl Microbiol 10(3):1727–1734Google Scholar
  23. 23.
    Pongchaidecha A, Lailerd N, Boonprasert W, Chattipakorn N (2009) Effects of curcuminoid supplement on cardiac autonomic status in high-fat-induced obese rats. Nutrition 25(7–8):870–878CrossRefGoogle Scholar
  24. 24.
    Kumfu S, Chattipakorn S, Chinda K, Fucharoen S, Chattipakorn N (2012) T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice. Eur J Haematol 88(6):535–548CrossRefGoogle Scholar
  25. 25.
    Chattipakorn N, Incharoen T, Kanlop N, Chattipakorn S (2007) Heart rate variability in myocardial infarction and heart failure. Int J Cardiol 120(3):289–296CrossRefGoogle Scholar
  26. 26.
    Apaijai N, Pintana H, Chattipakorn SC, Chattipakorn N (2013) Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats. Br J Pharmacol 169(5):1048–1057CrossRefGoogle Scholar
  27. 27.
    Feng M, Whitesall S, Zhang Y, Beibel M, D’Alecy L, DiPetrillo K (2008) Validation of volume–pressure recording tail-cuff blood pressure measurements. Am J Hypertens 21(12):1288–1291CrossRefGoogle Scholar
  28. 28.
    Kerkela R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C, Walters B, Shevtsov S, Pesant S, Clubb FJ, Rosenzweig A, Salomon RN, Van Etten RA, Alroy J, Durand JB, Force T (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12(8):908–916CrossRefGoogle Scholar
  29. 29.
    Samniang B, Shinlapawittayatorn K, Chunchai T, Pongkan W, Kumfu S, Chattipakorn SC, KenKnight BH, Chattipakorn N (2016) Vagus nerve stimulation improves cardiac function by preventing mitochondrial dysfunction in obese-insulin resistant rats. Sci Rep 6:19749CrossRefGoogle Scholar
  30. 30.
    Palee S, Weerateerangkul P, Chinda K, Chattipakorn SC, Chattipakorn N (2013) Mechanisms responsible for beneficial and adverse effects of rosiglitazone in a rat model of acute cardiac ischaemia-reperfusion. Exp Physiol 98(5):1028–1037CrossRefGoogle Scholar
  31. 31.
    Chinda K, Sanit J, Chattipakorn S, Chattipakorn N (2014) Dipeptidyl peptidase-4 inhibitor reduces infarct size and preserves cardiac function via mitochondrial protection in ischaemia-reperfusion rat heart. Diabetes Vasc Dis Res 11(2):75–83CrossRefGoogle Scholar
  32. 32.
    Hamilton MK, Boudry G, Lemay DG, Raybould HE (2015) Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol 308(10):G840–G851CrossRefGoogle Scholar
  33. 33.
    van den Heuvel JK, Boon MR, van Hengel I, Peschier-van der Put E, van Beek L, van Harmelen V, van Dijk KW, Pereira AM, Hunt H, Belanoff JK, Rensen PC, Meijer OC (2016) Identification of a selective glucocorticoid receptor modulator that prevents both diet-induced obesity and inflammation. Br J Pharmacol 173(11):1793–1804CrossRefGoogle Scholar
  34. 34.
    Stenman LK, Waget A, Garret C, Klopp P, Burcelin R, Lahtinen S (2014) Potential probiotic Bifidobacterium animalis ssp. lactis 420 prevents weight gain and glucose intolerance in diet-induced obese mice. Benef Microbes 5(4):437–445CrossRefGoogle Scholar
  35. 35.
    Mei X, Zhang X, Wang Z, Gao Z, Liu G, Hu H, Zou L, Li X (2016) Insulin sensitivity-enhancing activity of phlorizin is associated with lipopolysaccharide decrease and gut microbiota changes in obese and type 2 diabetes (db/db) mice. J Agric Food Chem 64(40):7502–7511CrossRefGoogle Scholar
  36. 36.
    Zhu J, Tang H, Zhang Z, Zhang Y, Qiu C, Zhang L, Huang P, Li F (2017) Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs. Int Immunopharmacol 43:236–242CrossRefGoogle Scholar
  37. 37.
    Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3(4):213–223CrossRefGoogle Scholar
  38. 38.
    Cabreiro F, Gems D (2013) Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Mol Med 5(9):1300–1310CrossRefGoogle Scholar
  39. 39.
    Lim SM, Jeong JJ, Woo KH, Han MJ, Kim DH (2016) Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression. Nutr Res 36(4):337–348CrossRefGoogle Scholar
  40. 40.
    Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58(7):1509–1517CrossRefGoogle Scholar
  41. 41.
    Beserra BT, Fernandes R, do Rosario VA, Mocellin MC, Kuntz MG, Trindade EB (2015) A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity. Clin Nutr 34(5):845–858CrossRefGoogle Scholar
  42. 42.
    Abildgaard A, Elfving B, Hokland M, Lund S, Wegener G (2017) Probiotic treatment protects against the pro-depressant-like effect of high-fat diet in Flinders Sensitive Line rats. Brain Behav Immun. doi: 10.1016/j.bbi.2017.04.017 Google Scholar
  43. 43.
    Lim E, Lim JY, Kim E, Kim YS, Shin JH, Seok PR, Jung S, Yoo SH, Kim Y (2016) Xylobiose, an alternative sweetener, ameliorates diabetes-related metabolic changes by regulating hepatic lipogenesis and miR-122a/33a in db/db mice. Nutrients 8(12):791CrossRefGoogle Scholar
  44. 44.
    Rajpal DK, Klein JL, Mayhew D, Boucheron J, Spivak AT, Kumar V, Ingraham K, Paulik M, Chen L, Van Horn S, Thomas E, Sathe G, Livi GP, Holmes DJ, Brown JR (2015) Selective spectrum antibiotic modulation of the gut microbiome in obesity and diabetes rodent models. PLoS One 10(12):e0145499CrossRefGoogle Scholar
  45. 45.
    Delzenne NM, Cani PD, Neyrinck AM (2007) Modulation of glucagon-like peptide 1 and energy metabolism by inulin and oligofructose: experimental data. J Nutr 137(11 Suppl):2547S–2551SGoogle Scholar
  46. 46.
    Cani PD, Joly E, Horsmans Y, Delzenne NM (2006) Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 60(5):567–572CrossRefGoogle Scholar
  47. 47.
    Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89(6):1751–1759CrossRefGoogle Scholar
  48. 48.
    Fallucca F, Porrata C, Fallucca S, Pianesi M (2014) Influence of diet on gut microbiota, inflammation and type 2 diabetes mellitus. First experience with macrobiotic Ma-Pi 2 diet. Diabetes Metab Res Rev 30(Suppl 1):48–54CrossRefGoogle Scholar
  49. 49.
    Doucet E, Laviolette M, Imbeault P, Strychar I, Rabasa-Lhoret R, Prud’homme D (2008) Total peptide YY is a correlate of postprandial energy expenditure but not of appetite or energy intake in healthy women. Metabolism 57(10):1458–1464CrossRefGoogle Scholar
  50. 50.
    Song M, Park S, Lee H, Min B, Jung S, Park S, Kim E, Oh S (2015) Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice. J Dairy Sci 98(3):1492–1501CrossRefGoogle Scholar
  51. 51.
    Li C, Nie S, Dinga Q, Zhua K, Wanga Z, Xionga T, Gonga J, Xie M (2014) Cholesterol-lowering effect of Lactobacillus plantarum NCU116 in a hyperlipidaemic rat model. J Funct Foods 8:340–347CrossRefGoogle Scholar
  52. 52.
    Guerreiroa I, Oliva-Telesa A, Enes P (2015) Improved glucose and lipid metabolism in European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and xylooligosaccharides. Aquaculture 441:57–63CrossRefGoogle Scholar
  53. 53.
    Jackson K, Lovegrove J (2012) Impact of probiotics, prebiotics and synbiotics on lipid metabolism in humans. Nutr Aging 1:181–200Google Scholar
  54. 54.
    Ilkun O, Boudina S (2013) Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 19(27):4806–4817CrossRefGoogle Scholar
  55. 55.
    Ye S, Zhong H, Yanamadala S, Campese VM (2006) Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. Hypertension 48(2):309–315CrossRefGoogle Scholar
  56. 56.
    Campese VM, Shaohua Y, Huiquin Z (2005) Oxidative stress mediates angiotensin II-dependent stimulation of sympathetic nerve activity. Hypertension 46(3):533–539CrossRefGoogle Scholar
  57. 57.
    Nickel A, Kohlhaas M, Maack C (2014) Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol 73:26–33CrossRefGoogle Scholar
  58. 58.
    Barbour JA, Turner N (2014) Mitochondrial stress signaling promotes cellular adaptations. Int J Cell Biol 2014:156020CrossRefGoogle Scholar
  59. 59.
    Forbes-Hernandez TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, Battino M (2014) The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 68:154–182CrossRefGoogle Scholar
  60. 60.
    Pongkan W, Pintana H, Sivasinprasasn S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N (2016) Testosterone deprivation accelerates cardiac dysfunction in obese male rats. J Endocrinol 229(3):209–220CrossRefGoogle Scholar
  61. 61.
    Sivasinprasasn S, Sa-Nguanmoo P, Pongkan W, Pratchayasakul W, Chattipakorn SC, Chattipakorn N (2016) Estrogen and DPP4 inhibitor, but not metformin, exert cardioprotection via attenuating cardiac mitochondrial dysfunction in obese insulin-resistant and estrogen-deprived female rats. Menopause 23(8):894–902CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Wannipa Tunapong
    • 1
    • 2
    • 3
  • Nattayaporn Apaijai
    • 1
    • 2
  • Sakawdaurn Yasom
    • 1
    • 4
  • Pongpan Tanajak
    • 1
    • 2
    • 3
  • Keerati Wanchai
    • 1
    • 2
    • 3
  • Titikorn Chunchai
    • 1
    • 2
    • 3
  • Sasiwan Kerdphoo
    • 1
    • 2
  • Sathima Eaimworawuthikul
    • 1
    • 2
  • Parameth Thiennimitr
    • 1
    • 4
  • Anchalee Pongchaidecha
    • 1
    • 2
    • 3
  • Anusorn Lungkaphin
    • 1
    • 2
    • 3
  • Wasana Pratchayasakul
    • 1
    • 2
    • 3
  • Siriporn C. Chattipakorn
    • 1
    • 2
    • 5
  • Nipon Chattipakorn
    • 1
    • 2
    • 3
  1. 1.Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  2. 2.Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
  3. 3.Cardiac Electrophysiology Unit, Department of Physiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  4. 4.Department of Microbiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  5. 5.Department of Oral Biology and Diagnostic Sciences, Faculty of DentistryChiang Mai UniversityChiang MaiThailand

Personalised recommendations