Advertisement

European Journal of Nutrition

, Volume 57, Issue 5, pp 1891–1900 | Cite as

High-fat diet inhibits PGC-1α suppressive effect on NFκB signaling in hepatocytes

  • Wermerson Assunção Barroso
  • Vanessa Jacob Victorino
  • Isabela Casagrande Jeremias
  • Ricardo Costa Petroni
  • Suely Kunimi Kubo Ariga
  • Thiago A Salles
  • Denise Frediani Barbeiro
  • Thais Martins de Lima
  • Heraldo Possolo de Souza
Original Contribution

Abstract

Purpose

The peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) regulates the expression of genes implicated in fatty acid oxidation and oxidative phosphorylation. Its role in liver steatosis is well established, since mice with liver-specific deletion of PGC-1α exhibit lipid accumulation and high-fat diet reduces hepatic PGC-1α expression in mice. In this study, we investigated the role of PGC-1α in the inflammatory changes observed in steatohepatitis induced by high-fat diet.

Methods

C57black/6 mice were fed a high-fat diet containing 30% fat for 10 weeks. After euthanasia, liver morphology was examined by HE staining and inflammation was determined by IL-6, TNF-α, and IL-1β quantification. Liver gene expression of PGC-1 isoforms was evaluated by real-time PCR and p65 NFκB nuclear translocation by Western blotting. HepG2 cells were treated with linoleic acid overload for 72 h to create an in vitro model of steatohepatitis. RNA interference (RNAi) was used to evaluate the involvement of PGC-1α on inflammatory mediators’ production by hepatocytes.

Results

The high-fat diet led to a state of nonalcoholic steatohepatitis, associated with increased deposits of intra-abdominal fat, hyperglycemia and hyperlipidemia. Mice liver also exhibited increased proinflammatory cytokines’ levels, decreased PGC-1α expression, and marked increase in p65 NFκB nuclear translocation. Linoleic acid treated cells also presented increased expression of proinflammatory cytokines and decreased PGC-1α expression. The knockdown of PGC-1α content caused an increase in IL-6 expression and release via enhanced IκBα phosphorylation and subsequent increase of p65 NFκB nuclear translocation.

Conclusion

High-fat diet induces liver inflammation by inhibiting PGC-1α expression and its suppressive effect in NFκB pathway.

Keywords

PGC-1α Steatosis Inflammation Hepatocytes Interleukin-6 NF-κB 

Notes

Author contributions

Design and conduct of the study: WAB, TAS, TML, HPS. Data collection and analysis: WAB, VJV, ICJ, RCP, SKA, DFB. Data interpretation: WAB, TAS, TML, HPS. Manuscript writing: WAB, TAS, TML, HPS.

Compliance with ethical standards

Funding

This work was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2012/07957-6).

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the author(s).

References

  1. 1.
    Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, Vanni E, Villanova N, Melchionda N, Rizzetto M (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37:917–923CrossRefGoogle Scholar
  2. 2.
    Willebrords J, Pereira IV, Maes M, Crespo Yanguas S, Colle I, Van Den Bossche B, Da Silva TC, de Oliveira CP, Andraus W, Alves VA, Cogliati B, Vinken M (2015) Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res 59:106–125CrossRefGoogle Scholar
  3. 3.
    Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC- 1 family of transcription coactivators. Cell Metab 1:361–370CrossRefGoogle Scholar
  4. 4.
    Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839CrossRefGoogle Scholar
  5. 5.
    Holloszy JO (2008) Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol Pharmacol 7:5–18Google Scholar
  6. 6.
    Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183CrossRefGoogle Scholar
  7. 7.
    Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM (2003) Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci USA 100:4012–4017CrossRefGoogle Scholar
  8. 8.
    Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138CrossRefGoogle Scholar
  9. 9.
    Croce MA, Eagon JC, LaRiviere LL, Korenblat KM, Klein S, Finck BN (2007) Hepatic lipin 1beta expression is diminished in insulin-resistant obese subjects and is reactivated by markedweight loss. Diabetes 56:2395–2399CrossRefGoogle Scholar
  10. 10.
    Aharoni-Simon M, Hann-Obercyger M, Pen S, Madar Z, Tirosh O (2011) Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice. Lab Invest 91:1018–1028CrossRefGoogle Scholar
  11. 11.
    Layne MJ, Rector RS, Borengasser SJ, Naples SP, Uptergrove GM, Ibdah JA, Booth FW (1985) Thyfault JP (2009) Cessation of daily wheel running differentially alters fat oxidation capacity in liver, muscle, and adipose tissue. J Appl Physiol 106:161–168Google Scholar
  12. 12.
    Morris EM, Meers GM, Booth FW, Fritsche KL, Hardin CD, Thyfault JP, Ibdah JA (2012) PGC-1α overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion. Am J Physiol Gastrointest Liver Physiol 303:979–992CrossRefGoogle Scholar
  13. 13.
    Nijland PG, Witte ME, van het Hof B, van der Pol S, Bauer J, Lassmann H, van der Valk P, de Vries HE, van Horssen J (2014) Astroglial PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: implications for multiple sclerosis. Acta Neuropathol Commun 2:170CrossRefGoogle Scholar
  14. 14.
    Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, Yan Z, Spiegelman BM (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282:30014–30021CrossRefGoogle Scholar
  15. 15.
    Handschin C, Choi CS, Chin S, Kim S, Kawamori D, Kurpad AJ, Neubauer N, Hu J, Mootha VK, Kim YB, Kulkarni RN, Shulman GI, Spiegelman BM (2007) Abnormal glucose homeostasis in skeletal muscle-specific PGC-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. J Clin Invest 117:3463–3474CrossRefGoogle Scholar
  16. 16.
    Llimona F, de Lima TM, Moretti AI, Theobaldo M, Jukemura J, Velasco IT, Machado MC, Souza HP (2014) PGC-1α expression is increased in leukocytes in experimental acute pancreatitis. Inflammation 37:1231–1239Google Scholar
  17. 17.
    Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321CrossRefGoogle Scholar
  18. 18.
    Schwartz DM, Wolins NE (2007) A simple and rapid method to assay triacylglycerol in cells and tissues. J Lipid Res 48(11):2514–2520CrossRefGoogle Scholar
  19. 19.
    Matoušková P, Bártíková H, Boušová I, Hanušová V, Szotáková B, Skálová L (2014) Reference genes for real-time PCR quantification of messenger RNAs and microRNAs in mouse model of obesity. PLoS One 9(1):e86033CrossRefGoogle Scholar
  20. 20.
    Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  21. 21.
    Fortes MA, Marzuca-Nassr GN, Vitzel KF, da Justa Pinheiro CH, Newsholme P, Curi R (2016) Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models? Anal Biochem 504:38–40CrossRefGoogle Scholar
  22. 22.
    Santos CF, Carneiro RE, Mendonca LS, Aguila MB, Mandarim-de-Lacerda CA (2009) Pan-PPAR agonist beneficial effects in overweight mice fed a high-fat high-sucrose diet. Nutrition 25:818–827CrossRefGoogle Scholar
  23. 23.
    Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, Tiribelli C (2008) Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med 14:72–81CrossRefGoogle Scholar
  24. 24.
    Oliveira LS, Santos DA, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB (2014) The inflammatory profile and liver damage of a sucrose-rich diet in mice. J Nutr Biochem 25:193–200CrossRefGoogle Scholar
  25. 25.
    Kuate D, Kengne AP, Biapa CP, Azantsa BG, Abdul Manan Bin Wan Muda W (2015) Tetrapleura tetraptera spice attenuates high-carboydrate, high-fat diet-induced obese and type 2 diabetic rats with metabolic syndrome features. Lipids Health Dis 14:50CrossRefGoogle Scholar
  26. 26.
    Ding L, Liu JL, Hassan W, Wang LL, Yan FR, Shang J (2014) Lipid modulatory activities of Cichorium glandulosum Boiss et Huet are mediated by multiple components within hepatocytes. Sci Rep 4:4715CrossRefGoogle Scholar
  27. 27.
    Dixon LJ, Flask CA, Papouchado BG, Feldstein AE, Nagy LE (2013) Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One 8:e56100CrossRefGoogle Scholar
  28. 28.
    van der Heijden RA, Sheedfar F, Morrison MC, Hommelberg PP, Kor D, Kloosterhuis NJ, Gruben N, Youssef SA, de Bruin A, Hofker MH, Kleemann R, Koonen DP, Heeringa P (2015) High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6j mice. Aging 7:256–268CrossRefGoogle Scholar
  29. 29.
    Petta S, Muratore C, Craxì A (2009) Non-alcoholic fatty liver disease pathogenesis: the present and the future. Dig Liver Dis 41:615–625CrossRefGoogle Scholar
  30. 30.
    Eisele PS, Salatino S, Sobek J, Hottiger MO, Handschin C (2013) The peroxisome proliferator-activated receptor γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells. J Biol Chem 288:2246–2260CrossRefGoogle Scholar
  31. 31.
    Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260CrossRefGoogle Scholar
  32. 32.
    Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Wermerson Assunção Barroso
    • 1
  • Vanessa Jacob Victorino
    • 1
  • Isabela Casagrande Jeremias
    • 1
  • Ricardo Costa Petroni
    • 1
  • Suely Kunimi Kubo Ariga
    • 1
  • Thiago A Salles
    • 2
  • Denise Frediani Barbeiro
    • 1
  • Thais Martins de Lima
    • 1
  • Heraldo Possolo de Souza
    • 1
  1. 1.Department of Clinical Medicine, Medical School, Emergency Medicine Laboratory (LIM51)University of São PauloSão PauloBrazil
  2. 2.Heart Institute (InCor)University of Sao Paulo Medical SchoolSão PauloBrazil

Personalised recommendations