Cranberry (Vaccinium macrocarpon) extract treatment improves triglyceridemia, liver cholesterol, liver steatosis, oxidative damage and corticosteronemia in rats rendered obese by high fat diet

  • Thamara C. Peixoto
  • Egberto G. Moura
  • Elaine de Oliveira
  • Patrícia N. Soares
  • Deysla S. Guarda
  • Dayse N. Bernardino
  • Xu Xue Ai
  • Vanessa da S. T. Rodrigues
  • Gabriela Rodrigues de Souza
  • Antonio Jorge Ribeiro da Silva
  • Mariana S. Figueiredo
  • Alex C. Manhães
  • Patrícia C. Lisboa
Original Contribution



Obese individuals have higher production of reactive oxygen species, which leads to oxidative damage. We hypothesize that cranberry extract (CE) can improve this dysfunction in HFD-induced obesity in rats since it has an important antioxidant activity. Here, we evaluated the effects of CE in food intake, adiposity, biochemical and hormonal parameters, lipogenic and adipogenic factors, hepatic morphology and oxidative balance in a HFD model.


At postnatal day 120 (PN120), male Wistar rats were assigned into two groups: (1) SD (n = 36) fed with a standard diet and (2) HFD (n = 36), fed with a diet containing 44.5% (35.2% from lard) energy from fat. At PN150, 12 animals from SD and HFD groups were killed while the others were subdivided into four groups (n = 12/group): animals that received 200 mg/kg cranberry extract (SD CE, HFD CE) gavage/daily/30 days or water (SD, HFD). At PN180, animals were killed.


HFD group showed higher body mass and visceral fat, hypercorticosteronemia, higher liver glucocorticoid sensitivity, cholesterol and triglyceride contents and microsteatosis. Also, HFD group had higher lipid peroxidation (plasma and tissues) and higher protein carbonylation (liver and adipose tissue) compared to SD group. HFD CE group showed lower body mass gain, hypotrygliceridemia, hypocorticosteronemia, and lower hepatic cholesterol and fatty acid synthase contents. HFD CE group displayed lower lipid peroxidation, protein carbonylation (liver and adipose tissue) and accumulation of liver fat compared to HFD group.


Although adiposity was not completely reversed, cranberry extract improved the metabolic profile and reduced oxidative damage and steatosis in HFD-fed rats, which suggests that it can help manage obesity-related disorders.


Obesity High fat diet Cranberry extract Corticosterone Lipids Oxidative stress 



The authors are grateful to Mr. Ulisses Siqueira and Miss Monica Moura for their technical assistance.

Author contributions

Concept and design: TCP, EGM, MSF, PCL. Animal treatment, collection of samples and measurements: TCP, PNS, DSG, DND, XXA, VSTR. Extract analyses: GRS, AJRS. Analysis and interpretation of data: TCP, EGM, EO, PNS, MSF, ACM, PCL. Drafting and/or revising the article critically for important intellectual content: TCP, EGM, EO, ACM, PCL. All authors read and approved the final manuscript.

Compliance with ethical standards

Financial support

Research was supported by the National Council for Scientific and Technological Development (CNPq), the State of Rio de Janeiro Carlos Chagas Filho Research Foundation (FAPERJ) and Coordination for the Enhancement of Higher Education Personnel (CAPES).

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

394_2017_1467_MOESM1_ESM.doc (181 kb)
Supplementary material 1 (DOC 181 kb)


  1. 1.
    Fernández-Sánchez A, Madrigal-Santillán E, Bautista M (2011) Inflammation, oxidative stress and obesity. Int J Mol Sci 12:3117–3132. doi: 10.3390/ijms12053117 CrossRefGoogle Scholar
  2. 2.
    Sikaris KA (2004) The clinical biochemistry of obesity. Clin Biochem Rev 25:165–181Google Scholar
  3. 3.
    Ruperez AI, Gil A, Aguilera CM (2014) Genetics of oxidative stress in obesity. Int J Mol Sci 15:3118–3144. doi: 10.3390/ijms15023118 CrossRefGoogle Scholar
  4. 4.
    Rupérez AI, Olza J, Gil-Campos M, Leis R, Mesa MD, Tojo R, Cañete R, Gil Á, Aguilera CM (2014) Association of genetic polymorphisms for glutathione peroxidase genes with obesity in spanish children. J Nutrigenet Nutrigenom 7:130–142. doi: 10.1159/000368833 CrossRefGoogle Scholar
  5. 5.
    Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, Zuppi C, Ghirlanda G (2010) Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud 7:15–25. doi: 10.1900/RDS.2010.7.15 CrossRefGoogle Scholar
  6. 6.
    Hogdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143CrossRefGoogle Scholar
  7. 7.
    Mukherjee M, Bandyopadhyay P, Kundu D (2014) Exploring the role of cranberry polyphenols in periodontits: a brief review. J Indian Soc Periodontol 18:136–139CrossRefGoogle Scholar
  8. 8.
    Howell AB, Reed JD, Krueger CG, Winterbottom R, Cunningham DG, Leahy M (2005) A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry 66:2281–2291CrossRefGoogle Scholar
  9. 9.
    Ruel G, Pomerleau S, Couture P, Lemieux S, Lamarche B, Couillard C (2006) Favourable impact of low-calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. Br J Nutr 96:357–364CrossRefGoogle Scholar
  10. 10.
    Denis MC, Desjardins Y, Furtos A, Marcil V, Dudonné S, Montoudis A, Garofalo C, Delvin E, Marette A, Levy E (2015) Prevention of oxidative stress, inflammation and mitochondrial dysfunction in the intestine by different cranberry phenolic fractions. Clin Sci (Lond) 128:197–212. doi: 10.1042/CS20140210 CrossRefGoogle Scholar
  11. 11.
    Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A (2014) A polyphenol-rich cranberry extract protects from diet induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64:872–883. doi: 10.1136/gutjnl-2014-307142 CrossRefGoogle Scholar
  12. 12.
    Boušová I, Bártíková H, Matoušková P, Lněničková K, Zappe L, Valentová K, Szotáková B, Martin J, Skálová L (2015) Cranberry extract–enriched diets increase NAD(P)H:quinone oxidoreductase and catalase activities in obese but not in nonobese mice. Nutr Res. 35:901–909. doi: 10.1016/j.nutres.2015.08.002 CrossRefGoogle Scholar
  13. 13.
    Lee J, Durst RW, Wrolstad RE (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int 88:1269–1278Google Scholar
  14. 14.
    Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  15. 15.
    Sun B, Da-Silva JMR, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274CrossRefGoogle Scholar
  16. 16.
    Figueiredo MS, de Moura EG, Lisboa PC, Troina AA, Trevenzoli IH, Oliveira E, Boaventura GT, da Fonseca Passos MC (2009) Flaxseed supplementation of rats during lactation changes the adiposity and glucose homeostasis of their offspring. Life Sci 85:9–10. doi: 10.1016/j.lfs.2009.06.018 CrossRefGoogle Scholar
  17. 17.
    Guarda DS, Lisboa PC, de Oliveira E, Nogueira-Neto JF, de Moura EG, Figueiredo MS (2014) Flaxseed oil during lactation changes milk and body composition in male and female suckling pups rats. Food Chem Toxicol 69:69–75. doi: 10.1016/j.fct.2014.04.003 CrossRefGoogle Scholar
  18. 18.
    Matthews DR, Hosker JP, Rudenski AS (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419CrossRefGoogle Scholar
  19. 19.
    Figueiredo MS, da Conceição EP, de Oliveira E, Lisboa PC, de Moura EG (2015) Maternal flaxseed diet during lactation changes adrenal function in adult male rat offspring. Br J Nutr 114:1046–1053. doi: 10.1017/S0007114515002184 CrossRefGoogle Scholar
  20. 20.
    Conceição EPS, Franco JG, Oliveira O, Resende AC, Amaral TA, Peixoto-Silva N, Passos MC, Moura EG, Lisboa PC (2013) Oxidative stress programming in rat model of postnatal early overnutrition—role of insulin resistance. J Nutr Biochem 24:81–87. doi: 10.1016/j.jnutbio.2012.02.010 CrossRefGoogle Scholar
  21. 21.
    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymol. 186:464–478CrossRefGoogle Scholar
  22. 22.
    Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312CrossRefGoogle Scholar
  23. 23.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  24. 24.
    Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661CrossRefGoogle Scholar
  25. 25.
    Brown PN, Shipley PR (2011) Determination of anthocyanins in cranberry fruit and cranberry fruit products by high-performance liquid chromatography with ultraviolet detection: single-laboratory validation. J AOAC Int 94:459–466Google Scholar
  26. 26.
    Mikulic-Petkovsek M, Slatnar A, Stampar F, Veberic R (2012) HPLC–MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem 135:2138–2146. doi: 10.1016/j.foodchem.2012.06.115 CrossRefGoogle Scholar
  27. 27.
    Feghali K, Feldman M, La VD, Santos J, Grenier D (2012) Cranberry proanthocyanidins: natural weapons against periodontal diseases. J Agric Food Chem 60:5728–5735. doi: 10.1021/jf203304v CrossRefGoogle Scholar
  28. 28.
    Blumberg JB, Camesano TA, Cassidy A, Kris-Etherton P, Howell A, Manach C, Ostertag LM, Sies H, Skulas-Ray A, Vita JA (2013) Cranberries and their bioactive constituents in human health. Adv Nutr 4:618–632. doi: 10.3945/an.113.004473 CrossRefGoogle Scholar
  29. 29.
    Çelik H, Özgen M, Serçec S, Kaya C (2008) Phytochemical accumulation and antioxidant capacity at four maturity stages of cranberry fruit. Sci Hortic 117:345–348. doi: 10.1016/j.scienta.2008.05.005 CrossRefGoogle Scholar
  30. 30.
    Carpenter JL, Caruso FL, Tata A, Vorsa N, Neto CC (2014) Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon). J Sci Food Agric 94:2738–2745. doi: 10.1002/jsfa.6618 CrossRefGoogle Scholar
  31. 31.
    Côté J, Caillet S, Doyon G, Dussault D, Salmieri S, Lorenzo G, Sylvain JF, Lacroix M (2011) Effects of juice processing on cranberry antioxidant properties. Food Res Int 44:2907–2914CrossRefGoogle Scholar
  32. 32.
    Nardi GM, Farias Januario AG, Freire CG, Megiolaro F, Schneider K, Perazzoli MR, Do Nascimento SR, Gon AC, Mariano LN, Wagner G, Niero R, Locatelli C (2016) Anti-inflammatory activity of berry fruits in mice model of inflammation is based on oxidative stress modulation. Pharmacogn Res. doi: 10.4103/0974-8490.178642 Google Scholar
  33. 33.
    Novotny JA, Baer DJ, Khoo C, Gebauer SK, Charron CS (2015) Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults. J Nutr 145:1185–1193CrossRefGoogle Scholar
  34. 34.
    Jensen-Urstad AP, Semenkovich CF (2012) Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger. Biochim Biophys Acta 1821:747–753. doi: 10.1016/j.bbalip.2011.09.017 CrossRefGoogle Scholar
  35. 35.
    Ioannou GN (2016) The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol Metab 27:84–95. doi: 10.1016/j.tem.2015.11.008 CrossRefGoogle Scholar
  36. 36.
    Muoio DM, Newgard CB (2004) Biomedicine. Insulin resistance takes a trip through the ER. Science 306(5695):425–426CrossRefGoogle Scholar
  37. 37.
    Bhaswant M, Fanning K, Netzel M, Mathai ML, Panchal SK, Brown L (2015) Cyanidin 3-glucoside improves diet-induced metabolic syndrome in rats. Pharmacol Res 102:208–217. doi: 10.1016/j.phrs.2015.10.006 CrossRefGoogle Scholar
  38. 38.
    Sanders FW, Griffin JL (2015) De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc. doi: 10.1111/brv.12178 Google Scholar
  39. 39.
    Pawlak M, Lefebvre P, Staels B (2015) Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62:720–733. doi: 10.1016/j.jhep.2014.10.039 CrossRefGoogle Scholar
  40. 40.
    Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445. doi: 10.1146/annurev-immunol-031210-101322 CrossRefGoogle Scholar
  41. 41.
    Mathison BD, Kimble LL, Kaspar KL, Khoo C, Chew BP (2014) Consumption of cranberry beverage improved endogenous antioxidant status and protected against bacteria adhesion in healthy humans: a randomized controlled trial. Nutr Res 4(5):420–427. doi: 10.1016/j.nutres.2014.03.006 CrossRefGoogle Scholar
  42. 42.
    Blumberg JB, Basu A, Krueger CG, Lila MA, Neto CC, Novotny JA, Reed JD, Rodriguez-Mateos A, Toner CD (2016) Impact of cranberries on gut microbiota and cardiometabolic health: proceedings of the cranberry health research conference 2015. Adv Nutr 7(4):759S–770S. doi: 10.3945/an.116.012583 CrossRefGoogle Scholar
  43. 43.
    Monk JM, Lepp D, Zhang CP, Wu W, Zarepoor L, Lu JT, Pauls KP, Tsao R, Wood GA, Robinson LE, Power KA (2016) Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation. J Nutr Biochem 28:129–139. doi: 10.1016/j.jnutbio.2015.10.014 CrossRefGoogle Scholar
  44. 44.
    Chang YC, Yu YH, Shew JY, Lee WJ, Hwang JJ, Chen YH, Chen YR, Wei PC, Chuang LM, Lee WH (2013) Deficiency of NPGPx, an oxidative stress sensor, leads to obesity in mice and human. EMBO Mol Med 5(8):1165–1179. doi: 10.1002/emmm.201302679 CrossRefGoogle Scholar
  45. 45.
    Da Costa LA, Badawi A, EI-Sohemy A (2012) Nutrigenetics and modulation of oxidative stress. Ann Nutr Metab 60(Suppl 3):27–36. doi: 10.1159/000337311 CrossRefGoogle Scholar
  46. 46.
    Stimson RH, Walker BR (2013) The role and regulation of 11β-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome. Horm Mol Biol Clin Investig 15:37–48. doi: 10.1515/hmbci-2013-0015 Google Scholar
  47. 47.
    Stimson RH, Andersson J, Andrew R, Redhead DN, Karpe F, Hayes PC, Olsson T, Walker BR (2009) Cortisol release from adipose tissue by 11β-hydroxysteroid dehydrogenase type 1 in humans. Diabetes 58:46–53. doi: 10.2337/db08-0969 CrossRefGoogle Scholar
  48. 48.
    Hughes KA, Manolopoulos KN, Iqbal J, Cruden NL, Stimson RH, Reynolds RM, Newby DE, Andrew R, Karpe F, Walker BR (2012) Recycling between cortisol and cortisone in human splanchnic, subcutaneous adipose, and skeletal muscle tissues in vivo. Diabetes. doi: 10.2337/db11-1345 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Thamara C. Peixoto
    • 1
  • Egberto G. Moura
    • 1
  • Elaine de Oliveira
    • 1
  • Patrícia N. Soares
    • 1
  • Deysla S. Guarda
    • 1
  • Dayse N. Bernardino
    • 1
  • Xu Xue Ai
    • 1
  • Vanessa da S. T. Rodrigues
    • 1
  • Gabriela Rodrigues de Souza
    • 2
  • Antonio Jorge Ribeiro da Silva
    • 2
  • Mariana S. Figueiredo
    • 1
  • Alex C. Manhães
    • 3
  • Patrícia C. Lisboa
    • 1
  1. 1.Laboratory of Endocrine Physiology, Departamento de Ciências Fisiológicas, 5o andar, Instituto de BiologiaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of Program of Natural Products, Phytochemical Analysis Laboratory, Institute for Natural Products ResearchFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Laboratory of Neurophysiology, Departamento de Ciências Fisiológicas, 5o andar, Instituto de BiologiaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations