European Journal of Nutrition

, Volume 57, Issue 5, pp 1793–1805 | Cite as

Polyphenolic extract attenuates fatty acid-induced steatosis and oxidative stress in hepatic and endothelial cells

  • Laura Vergani
  • Giulia Vecchione
  • Francesca Baldini
  • Elena Grasselli
  • Adriana Voci
  • Piero Portincasa
  • Pier Francesco Ferrari
  • Bahar Aliakbarian
  • Alessandro A. Casazza
  • Patrizia Perego
Original Contribution



Phenolic compounds (PC) of virgin olive oil exert several biochemical and pharmacological beneficial effects. Some dietary PC seem to prevent/improve obesity and metabolic-related disorders such as non-alcoholic fatty liver disease (NAFLD). We investigated the possible effects of PC extracted from olive pomace (PEOP) and of the main single molecules present in the extract (tyrosol, apigenin, oleuropein, p-coumaric and caffeic acid) in protecting hepatocytes and endothelial cells against triglyceride accumulation and oxidative stress.


Rat hepatoma and human endothelial cells were exposed to a mixture of oleate/palmitate to mimic the condition of NAFLD and atherosclerosis, respectively. Then, cells were incubated for 24 h in the absence or in the presence of PC or PEOP. Different parameters were evaluated, such as lipid accumulation and oxidative stress-related markers.


In hepatic cells, expression of peroxisome proliferator-activated receptors (PPARs) and of stearoyl-CoA desaturase 1 (SCD-1) were assessed as index of lipid metabolism. In endothelial cells, expression of intercellular adhesion molecule-1 (ICAM-1), activation of nuclear factor kappa-B (NF-kB), release of nitric oxide (NO), and wound-healing rate were assessed as index of inflammation.


PEOP extract ameliorated hepatic lipid accumulation and lipid-dependent oxidative imbalance thus showing potential applications as therapeutic agent tuning down hepatosteatosis and atherosclerosis.


Non-alcoholic fatty liver disease Atherosclerosis Olive pomace Phenolic compound Oxidative stress 



This research was supported by grants from MIUR-COFIN (Prot. 20089SRS2X_002), Compagnia San Paolo Torino (Prat. No. 2009.1824-1067/IT/pv), University of Genova (no. 2015), European Joint Programming Initiative “A Healthy Diet for a Healthy Life (JPI HDHL)–National Project Wellness, Nutrition, Sport and Exercise prevention (WISE) 2013–16 (PP).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

394_2017_1464_MOESM1_ESM.doc (39 kb)
Supplementary material 1 (DOC 39 kb)
394_2017_1464_MOESM2_ESM.doc (35 kb)
Supplementary material 2 (DOC 35 kb)


  1. 1.
    Loomba R, Sanyal AJ (2013) The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 10:686–690. doi: 10.1038/nrgastro.2013.171 CrossRefGoogle Scholar
  2. 2.
    Huang YY, Gusdon AM, Qu S (2013) Nonalcoholic fatty liver disease: molecular pathways and therapeutic strategies. Lipids Health Dis 12:171. doi: 10.1186/1476-511X-12-171 CrossRefGoogle Scholar
  3. 3.
    Anstee QM, Targher G, Day CP (2013) Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 10:330–344. doi: 10.1038/nrgastro.2013.41 CrossRefGoogle Scholar
  4. 4.
    Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights. Science 332:1519–1523. doi: 10.1126/science.1204265 CrossRefGoogle Scholar
  5. 5.
    Sahini NBJ (2014) Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Progr Lipid Res. doi: 10.1016/j.plipres.2014.02.002 Google Scholar
  6. 6.
    Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114:842–845CrossRefGoogle Scholar
  7. 7.
    Rolo AP, Teodoro JS, Palmeira CM (2012) Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med 52:59–69. doi: 10.1016/j.freeradbiomed.2011.10.003 CrossRefGoogle Scholar
  8. 8.
    Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86. doi: 10.1186/1476-4598-12-86 CrossRefGoogle Scholar
  9. 9.
    Rigacci S, Stefani M. Nutraceutical Properties of Olive Oil Polyphenols. An Itinerary from Cultured Cells through Animal Models to Humans. Int J Mol Sci 2016;17. doi: 10.3390/ijms17060843
  10. 10.
    Mata P, Alvarez-Sala LA, Rubio MJ, Nuno J, De Oya M (1992) Effects of long-term monounsaturated- vs polyunsaturated-enriched diets on lipoproteins in healthy men and women. Am J Clin Nutr 55:846–850CrossRefGoogle Scholar
  11. 11.
    Mensink RP, Katan MB (1989) Effect of a diet enriched with monounsaturated or polyunsaturated fatty acids on levels of low-density and high-density lipoprotein cholesterol in healthy women and men. N Engl J Med 321:436–441. doi: 10.1056/NEJM198908173210705 CrossRefGoogle Scholar
  12. 12.
    Mensink RP, Katan MB (1992) Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler Thromb 12:911–919. doi: 10.1161/01.ATV.12.8.911 CrossRefGoogle Scholar
  13. 13.
    Reaven P, Parthasarathy S, Grasse BJ, Miller E, Steinberg D, Witztum JL (1993) Effects of oleate-rich and linoleate-rich diets on the susceptibility of low density lipoprotein to oxidative modification in mildly hypercholesterolemic subjects. J Clin Invest 91:668–676. doi: 10.1172/JCI116247 CrossRefGoogle Scholar
  14. 14.
    Ryan M, McInerney D, Owens D, Collins P, Johnson a, Tomkin GH (2009) Diabetes and the Mediterranean diet: a beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium-dependent vasoreactivity. QJM 93:85–91. doi: 10.1093/qjmed/93.2.85 CrossRefGoogle Scholar
  15. 15.
    Owen RW, Giacosa A, Hull WE, Haubner R, Würtele G, Spiegelhalder B et al (2000) Olive-oil consumption and health: the possible role of antioxidants. Lancet Oncol 1:107–112CrossRefGoogle Scholar
  16. 16.
    Visioli F, Poli A, Gall C (2002) Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev 22:65–75CrossRefGoogle Scholar
  17. 17.
    Zern TL, Fernandez ML (2005) cardioprotective effects of dietary polyphenols. J Nutr 2291–4Google Scholar
  18. 18.
    Itoh A, Isoda K, Kondoh M, Kawase M, Watari A, Kobayashi M et al (2010) Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury. Biol Pharm Bull 33:983–987CrossRefGoogle Scholar
  19. 19.
    Poudyal H, Campbell F, Brown L (2010) Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. J Nutr 140:946–953. doi: 10.3945/jn.109.117812 CrossRefGoogle Scholar
  20. 20.
    Gutiérrez-Juárez R, Pocai A, Mulas C, Ono H, Bhanot S, Monia BP et al (2006) Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J Clin Invest 116:1686–1695. doi: 10.1172/JCI26991 CrossRefGoogle Scholar
  21. 21.
    Viswakarma N, Jia Y, Bai L, Vluggens A, Borensztajn J, Xu J et al (2010) Coactivators in PPAR-regulated gene expression. PPAR Res. doi: 10.1155/2010/250126 Google Scholar
  22. 22.
    Martin G, Schoonjans K, Lefebvre AM, Staels B, Auwerx J (1997) Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem 272:28210–28217CrossRefGoogle Scholar
  23. 23.
    Yu S, Matsusue K, Kashireddy P, Cao W-Q, Yeldandi V, Yeldandi AV et al (2003) Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem 278:498–505. doi: 10.1074/jbc.M210062200 CrossRefGoogle Scholar
  24. 24.
    Shah V, Haddad FG, Garcia-Cardena G, Frangos JA, Mennone A, Groszmann RJ et al (1997) Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest 100:2923–2930. doi: 10.1172/JCI119842 CrossRefGoogle Scholar
  25. 25.
    Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1CrossRefGoogle Scholar
  26. 26.
    Connolly MK, Bedrosian AS, Malhotra A, Henning JR, Ibrahim J, Vera V et al (2010) In hepatic fibrosis, liver sinusoidal endothelial cells acquire enhanced immunogenicity. J Immunol 185:2200–2208. doi: 10.4049/jimmunol.1000332 CrossRefGoogle Scholar
  27. 27.
    Gay AN, Mushin OP, Lazar DA, Naik-Mathuria BJ, Yu L, Gobin A, Smith CW OO (2011) Wound healing characteristics of ICAM-1 null mice devoid of all isoforms of ICAM-1. J Surg Res 1–7. doi: 10.1016/j.jss.2011.06.053
  28. 28.
    Kontogianni MD, Tileli N, Margariti A, Georgoulis M, Deutsch M, Tiniakos D et al (2014) Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin Nutr 33:678–683. doi: 10.1016/j.clnu.2013.08.014 CrossRefGoogle Scholar
  29. 29.
    Ryan MC, Itsiopoulos C, Thodis T, Ward G, Trost N, Hofferberth S et al (2013) The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol 59:138–143. doi: 10.1016/j.jhep.2013.02.012 CrossRefGoogle Scholar
  30. 30.
    Hur W, Kim SW, Lee YK, Choi JE, Hong SW, Song MJ, Bae SH, Park T, Um SJYS (2012) Oleuropein reduces free fatty acid-induced lipogenesis via lowered extracellular signal-regulated kinase activation in hepatocytes. Nutro Res 32:778–786. doi: 10.1016/j.nutres.2012.06.017 CrossRefGoogle Scholar
  31. 31.
    Barbaro B, Toietta G, Maggio R, Arciello M, Tarocchi M, Galli A et al (2014) Effects of the olive-derived polyphenol oleuropein on human health. Int J Mol Sci 15:18508–18524. doi: 10.3390/ijms151018508 CrossRefGoogle Scholar
  32. 32.
    Park S, Choi Y, Um S-J, Yoon SK, Park T (2011) Oleuropein attenuates hepatic steatosis induced by high-fat diet in mice. J Hepatol 54:984–993. doi: 10.1016/j.jhep.2010.08.019 CrossRefGoogle Scholar
  33. 33.
    Goya L, Mateos R, Bravo L (2007) Effect of the olive oil phenol hydroxytyrosol on human hepatoma HepG2 cells. Protection against oxidative stress induced by tert-butylhydroperoxide. Eur J Nutr 46:70–78. doi: 10.1007/s00394-006-0633-8 CrossRefGoogle Scholar
  34. 34.
    Hoek-van den Hil EF, van Schothorst EM, van der Stelt I, Swarts HJM, van Vliet M, Amolo T, et al (2015) Direct comparison of metabolic health effects of the flavonoids quercetin, hesperetin, epicatechin, apigenin and anthocyanins in high-fat-diet-fed mice. Genes Nutr 10:469. doi: 10.1007/s12263-015-0469-z
  35. 35.
    Ragab SMM, Abd Elghaffar SK, El-Metwally TH, Badr G, Mahmoud MH, Omar HM (2015) Effect of a high fat, high sucrose diet on the promotion of non-alcoholic fatty liver disease in male rats: the ameliorative role of three natural compounds. Lipids Health Dis 14:83. doi: 10.1186/s12944-015-0087-1 CrossRefGoogle Scholar
  36. 36.
    Liao C-C, Ou T-T, Huang H-P, Wang C-J (2014) The inhibition of oleic acid induced hepatic lipogenesis and the promotion of lipolysis by caffeic acid via up-regulation of AMP-activated kinase. J Sci Food Agric 94:1154–1162. doi: 10.1002/jsfa.6386 CrossRefGoogle Scholar
  37. 37.
    Grasselli E, Voci A, Canesi L, Goglia F, Ravera S, Panfoli I et al (2011) Non-receptor-mediated actions are responsible for the lipid-lowering effects of iodothyronines in FaO rat hepatoma cells. J Endocrinol 210:59–69. doi: 10.1530/JOE-11-0074 CrossRefGoogle Scholar
  38. 38.
    Grasselli E, Cortese K, Fabbri R, Smerilli A, Vergani L, Voci A, Gallo G, Canesi L (2014) Thyromimetic actions of tetrabromobisphenol A (TBBPA) in steatotic FaO rat hepatoma cells. Chemosphere 112:511–518CrossRefGoogle Scholar
  39. 39.
    Zhou H, Liu X, Liu L, Yang Z, Zhang S, Tang M, et al. Oxidative stress and apoptosis of human brain microvascular endothelial cells induced by free fatty acids. J Int Med Res 37:1897–903Google Scholar
  40. 40.
    Szmitko PE, Wang C-H, Weisel RD, Jeffries GA, Anderson TJ, Verma S (2003) Biomarkers of vascular disease linking inflammation to endothelial activation: part II. Circulation 108:2041–2048. doi: 10.1161/01.CIR.0000089093.75585.98 CrossRefGoogle Scholar
  41. 41.
    Aliakbarian B, Casazza AA, Perego P (2011) Valorization of olive oil solid waste using high pressure-high temperature reactor. Food Chem 128:704–710. doi: 10.1016/j.foodchem.2011.03.092 CrossRefGoogle Scholar
  42. 42.
    Paini M, Casazza AA, Aliakbarian B, Perego PBACG (2016) Influence of ethanol/water ratio in ultrasound and high-pressure/high-temperature phenolic compound extraction from agri-food waste. Int J Food Sci Tech 51:349–358CrossRefGoogle Scholar
  43. 43.
    Vergani L, Vecchione G, Baldini F, Voci A, Ferrari PF, Aliakbarian B, Casazza AAPP (2016) Antioxidant and hepatoprotective potentials of phenolic compounds from olive pomace. Chem Eng Trans 49:475–480Google Scholar
  44. 44.
    Gutfinger T (1981) Polyphenols in olive oils. J Am Oil Chem Soc 58:966–968. doi: 10.1007/BF02659771 CrossRefGoogle Scholar
  45. 45.
    Lauris V, Crettaz M, Kahn CR (1986) Coordinate roles of insulin and glucose on the growth of hepatoma cells in culture. Endocrinology 118:2519–2524. doi: 10.1210/endo-118-6-2519 CrossRefGoogle Scholar
  46. 46.
    Wiechelman KJ, Braun RD, Fitzpatrick JD (1988) Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem 175:231–237CrossRefGoogle Scholar
  47. 47.
    Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255. doi: 10.1038/sj.bjp.0705776 CrossRefGoogle Scholar
  48. 48.
    Iguchi H, Kojo S, Ikeda M. Lipid peroxidation and disintegration of the cell membrane structure in cultures of rat lung fibroblasts treated with asbestos. J Appl Toxicol 13:269–75Google Scholar
  49. 49.
    Grasselli E, Voci A, Pesce C, Canesi L, Fugassa E, Gallo G et al (2010) PAT protein mRNA expression in primary rat hepatocytes: effects of exposure to fatty acids. Int J Mol Med 25:505–512Google Scholar
  50. 50.
    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JSTS (1982) Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Anal Biochem 126:131–138CrossRefGoogle Scholar
  51. 51.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45CrossRefGoogle Scholar
  52. 52.
    LaemmLi UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  53. 53.
    Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354CrossRefGoogle Scholar
  54. 54.
    Sun C, Wu Z, Wang Z, Zhang H (2015) Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evidence-Based Complementary and Alternative Medicine 595393, 9Google Scholar
  55. 55.
    Waszkowiak K, Gliszczyńska-Świgło A (2016) Binary ethanol–water solvents affect phenolic profile and antioxidant capacity of flaxseed extracts. Europ Food Res Technol 242:777–786CrossRefGoogle Scholar
  56. 56.
    Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong C-P, Nettleton JA et al (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85:895–909CrossRefGoogle Scholar
  57. 57.
    Covas M-I, Nyyssönen K, Poulsen HE, Kaikkonen J, Zunft H-JF, Kiesewetter H et al (2006) The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med 145:333–341CrossRefGoogle Scholar
  58. 58.
    Hooper L, Kay C, Abdelhamid A, Kroon PA, Cohn JS, Rimm EB et al (2012) Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials 1–3. Am J Clin Nutr 95:740–751. doi: 10.3945/ajcn.111.023457.INTRODUCTION CrossRefGoogle Scholar
  59. 59.
    Bower A, Marquez S, De Mejia EG (2015) The health benefits of selected culinary herbs and spices found in the traditional mediterranean diet. Crit Rev Food Sci Nutr. doi: 10.1080/10408398.2013.805713 Google Scholar
  60. 60.
    Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86. doi: 10.1038/34184 CrossRefGoogle Scholar
  61. 61.
    Byrne CD. Fatty liver: role of inflammation and fatty acid nutrition. Prostaglandins Leukot Essent Fatty Acids 82:265–71. doi: 10.1016/j.plefa.2010.02.012
  62. 62.
    Lalor PF, Shields P, Grant A, Adams DH (2002) Recruitment of lymphocytes to the human liver. Immunol Cell Biol 80:52–64. doi: 10.1046/j.1440-1711.2002.01062.x CrossRefGoogle Scholar
  63. 63.
    Roebuck KA, Finnegan A (1999) Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol 66:876–888CrossRefGoogle Scholar
  64. 64.
    Kuhlencordt PJ, Rosel E, Gerszten RE, Morales-Ruiz M, Dombkowski D, Atkinson WJ et al (2004) Role of endothelial nitric oxide synthase in endothelial activation: insights from eNOS knockout endothelial cells. Am J Physiol Cell Physiol 286:C1195–C1202. doi: 10.1152/ajpcell.00546.2002 CrossRefGoogle Scholar
  65. 65.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424. doi: 10.1152/physrev.00029.2006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Laura Vergani
    • 1
  • Giulia Vecchione
    • 1
  • Francesca Baldini
    • 1
  • Elena Grasselli
    • 1
  • Adriana Voci
    • 1
  • Piero Portincasa
    • 2
  • Pier Francesco Ferrari
    • 3
  • Bahar Aliakbarian
    • 3
  • Alessandro A. Casazza
    • 3
  • Patrizia Perego
    • 3
  1. 1.Department of Earth, Environment and Life ScienceUniversity of GenoaGenovaItaly
  2. 2.Department of Biomedical Sciences and Human OncologyUniversity of BariBariItaly
  3. 3.Department of Civil, Chemical and Environmental EngineeringUniversity of GenoaGenovaItaly

Personalised recommendations