Advertisement

European Journal of Nutrition

, Volume 57, Issue 4, pp 1667–1675 | Cite as

Fish consumption, intake of fats and cognitive decline at middle and older age: the Doetinchem Cohort Study

  • Astrid C. J. Nooyens
  • Boukje M. van Gelder
  • H. Bas Bueno-de-Mesquita
  • Martin P. J. van Boxtel
  • W. M. Monique Verschuren
Original Contribution

Abstract

Purpose

To get insight in the impact of fish and fat intake in the prevention of accelerated cognitive decline with ageing, we tested associations between fish and different fat intakes and 5-year change in cognitive functions.

Methods

In 2612 men and women of the Doetinchem Cohort Study, aged 43–70 years at baseline, dietary intake (including fish consumption) and cognitive function were assessed at baseline and at 5-year follow-up. Average fish consumption (frequency) and intakes (as energy percentages) of total fat, saturated, mono unsaturated, and polyunsaturated fatty acids (PUFA), linoleic, docosahexaenoic, eicosapentaenoic, and a-linolenic acid (ALA), and cholesterol were averaged over baseline and follow-up. Intakes were studied in relation to 5-year change in global cognitive function, memory, information processing speed, and cognitive flexibility, using ANCOVA and multivariate linear regression analyses.

Results

No consistent association between (fatty) fish consumption and cognitive decline was observed. Higher cholesterol intake was associated with faster cognitive decline (p < 0.05). Higher n-3 PUFA (especially ALA) intake was associated with slower decline in global cognitive function and memory (p < 0.01). Intakes of other fatty acids were not associated with cognitive decline.

Conclusions

Higher cholesterol intake was detrimental, while higher ALA intake was beneficial for maintaining cognitive function with ageing, already at middle age.

Keywords

Cognitive decline Cholesterol Fatty acids Fish consumption Middle age n-3 PUFA 

Notes

Acknowledgements

This study was financially supported with a grant from the Internationale Stichting Alzheimer Onderzoek (ISAO, Grant No. 08551). The Doetinchem Cohort Study is financially supported by the Ministry of Public Health, Welfare and Sport of The Netherlands and the National Institute for Public Health and the Environment. The data up to and including 1997, including the dietary assessment method, were additionally financially supported by the Europe against Cancer programme of the European Commission (DG SANCO). Funders had no role with respect to methods and content of this study. There were no conflicts of interest. The authors thank the respondents and the epidemiologists and fieldworkers of the Municipal Health Service in Doetinchem for their contribution to the data collection for this study. Principal investigator is Prof WMM Verschuren. Logistic management was provided by J Steenbrink and P Vissink, and administrative support by EP van der Wolf. Data management was provided by A Blokstra, AWD van Kessel and PE Steinberger.

Compliance with ethical standards

Ethical standards

Examination rounds of the Doetinchem Cohort Study have been completed in compliance with the Helsinki Declaration and approved by an external Medical Ethics Committee (TNO). Written informed consent was obtained from all subjects.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Geschwind DH, Robidoux J, Alarcon M, Miller BL, Wilhelmsen KC, Cummings JL, Nasreddine ZS (2001) Dementia and neurodevelopmental predisposition: cognitive dysfunction in presymptomatic subjects precedes dementia by decades in frontotemporal dementia. Ann Neurol 50(6):741–746CrossRefPubMedGoogle Scholar
  2. 2.
    Bourre JM (2005) Dietary omega-3 Fatty acids and psychiatry: mood, behaviour, stress, depression, dementia and aging. J Nutr Health Aging 9(1):31–38PubMedGoogle Scholar
  3. 3.
    Kalmijn S, van Boxtel MPJ, Ocké M, Verschuren WMM, Kromhout D, Launer LJ (2004) Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62(2):275–280CrossRefPubMedGoogle Scholar
  4. 4.
    Beydoun MA, Kaufman JS, Sloane PD, Heiss G, Ibrahim J (2008) n-3 Fatty acids, hypertension and risk of cognitive decline among older adults in the Atherosclerosis Risk in Communities (ARIC) study. Public Health Nutr 11(1):17–29CrossRefPubMedGoogle Scholar
  5. 5.
    Naqvi AZ, Harty B, Mukamal KJ, Stoddard AM, Vitolins M, Dunn JE (2011) Monounsaturated, trans, and saturated Fatty acids and cognitive decline in women. J Am Geriatr Soc 59(5):837–843. doi: 10.1111/j.1532-5415.2011.03402.x CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Verschuren WMM, Blokstra A, Picavet HSJ, Smit HA (2008) Cohort profile: the Doetinchem Cohort Study. Int J Epidemiol 37(6):1236–1241CrossRefPubMedGoogle Scholar
  7. 7.
    Nooyens AC, Bueno-de-Mesquita HB, van Boxtel MP, van Gelder BM, Verhagen H, Verschuren WM (2011) Fruit and vegetable intake and cognitive decline in middle-aged men and women: the Doetinchem Cohort Study. Br J Nutr 106(5):752–761. doi: 10.1017/S0007114511001024 CrossRefPubMedGoogle Scholar
  8. 8.
    Ocké MC, Bueno-de-Mesquita HB, Goddijn HE, Jansen A, Pols MA, van Staveren WA, Kromhout D (1997) The Dutch EPIC food frequency questionnaire. I. Description of the questionnaire, and relative validity and reproducibility for food groups. Int J Epidemiol 26(Suppl 1):S37–S48CrossRefPubMedGoogle Scholar
  9. 9.
    Ocké MC, Bueno-de-Mesquita HB, Pols MA, Smit HA, van Staveren WA, Kromhout D (1997) The Dutch EPIC food frequency questionnaire. II. Relative validity and reproducibility for nutrients. Int J Epidemiol 26(Suppl 1):S49–S58CrossRefPubMedGoogle Scholar
  10. 10.
    NEVO Foundation (ed) (1996) Dutch food composition database 1996 (NEVO) [In Dutch]. Voorlichtingsbureau voor de voeding, Den HaagGoogle Scholar
  11. 11.
    NEVO Foundation (ed) (2001) Dutch food composition database 2001 (NEVO) [In Dutch]. Voorlichtingsbureau voor de voeding, Den HaagGoogle Scholar
  12. 12.
    Pols MA, Peeters PH, Ocke MC, Slimani N, Bueno-de-Mesquita HB, Collette HJ (1997) Estimation of reproducibility and relative validity of the questions included in the EPIC Physical Activity Questionnaire. Int J Epidemiol 26(Suppl 1):S181–S189CrossRefPubMedGoogle Scholar
  13. 13.
    Wareham NJ, Jakes RW, Rennie KL, Schuit AJ, Mitchell J, Hennings S, Day NE (2003) Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr 6(4):407–413CrossRefPubMedGoogle Scholar
  14. 14.
    Kattermann R, Jaworek D, Moller G, Assmann G, Bjorkhem I, Svensson L, Borner K, Boerma G, Leijnse B, Desager JP et al (1984) Multicentre study of a new enzymatic method of cholesterol determination. J Clin Chem Clin Biochem 22(3):245–251PubMedGoogle Scholar
  15. 15.
    Lopes-Virella MF, Stone P, Ellis S, Colwell JA (1977) Cholesterol determination in high-density lipoproteins separated by three different methods. Clin Chem 23(5):882–884PubMedGoogle Scholar
  16. 16.
    Houterman S, Verschuren WM, Oomen CM, Boersma-Cobbaert CM, Kromhout D (2001) Trends in total and high density lipoprotein cholesterol and their determinants in The Netherlands between 1993 and 1997. Int J Epidemiol 30(5):1063–1070CrossRefPubMedGoogle Scholar
  17. 17.
    Tietz NW (ed) (1995) Clinical guide to laboratory tests, 3rd edn. Pa WB Saunders Company, PhiladelphiaGoogle Scholar
  18. 18.
    WHO Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. GenevaGoogle Scholar
  19. 19.
    Zee KI, Sanderman R (1993) Het meten van de algemene gezondheidstoestand met de RAND-36: een handleiding. Noordelijk Centrum voor Gezondheidsvraagstukken, Rijksuniversiteit GroningenGoogle Scholar
  20. 20.
    Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30(6):473–483CrossRefPubMedGoogle Scholar
  21. 21.
    Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, Verhoef P (2007) Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 369(9557):208–216CrossRefPubMedGoogle Scholar
  22. 22.
    van Boxtel MP, Buntinx F, Houx PJ, Metsemakers JF, Knottnerus A, Jolles J (1998) The relation between morbidity and cognitive performance in a normal aging population. J Gerontol A Biol Sci Med Sci 53(2):M147–M154CrossRefPubMedGoogle Scholar
  23. 23.
    Willett W (ed) (1998) Nutritional epidemiology, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  24. 24.
    Morris MC, Brockman J, Schneider JA, Wang Y, Bennett DA, Tangney CC, van de Rest O (2016) Association of seafood consumption, brain mercury level, and APOE epsilon4 status with brain neuropathology in older adults. JAMA 315(5):489–497. doi: 10.1001/jama.2015.19451 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler MM (1997) Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol 42(5):776–782. doi: 10.1002/ana.410420514 CrossRefPubMedGoogle Scholar
  26. 26.
    Anstey KJ, Lipnicki DM, Low LF (2008) Cholesterol as a risk factor for dementia and cognitive decline: a systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry Off J Am Assoc Geriatr Psychiatry 16(5):343–354CrossRefGoogle Scholar
  27. 27.
    Holub DJ, Holub BJ (2004) Omega-3 fatty acids from fish oils and cardiovascular disease. Mol Cell Biochem 263(1–2):217–225CrossRefPubMedGoogle Scholar
  28. 28.
    Newman PE (2000) Alzheimer’s disease revisited. Med Hypotheses 54(5):774–776CrossRefPubMedGoogle Scholar
  29. 29.
    Saugstad LF (2006) Are neurodegenerative disorder and psychotic manifestations avoidable brain dysfunctions with adequate dietary omega-3? Nutr Health 18(2):89–101CrossRefPubMedGoogle Scholar
  30. 30.
    Sydenham E, Dangour AD, Lim WS (2012) Omega 3 fatty acid for the prevention of cognitive decline and dementia. Cochrane Database Syst Rev 6:CD005379. doi: 10.1002/14651858.CD005379.pub3 CrossRefGoogle Scholar
  31. 31.
    Robinson JG, Ijioma N, Harris W (2010) Omega-3 fatty acids and cognitive function in women. Womens Health (Lond Engl) 6(1):119–134. doi: 10.2217/whe.09.75 CrossRefGoogle Scholar
  32. 32.
    Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS (2005) Fish consumption and cognitive decline with age in a large community study. Arch Neurol 62(12):1849–1853CrossRefPubMedGoogle Scholar
  33. 33.
    Van Gelder BM, Tijhuis M, Kalmijn S, Kromhout D (2007) Fish consumption, n-3 fatty acids, and subsequent 5-year cognitive decline in elderly men: the Zutphen Elderly Study. Am J Clin Nutr 85(4):1142–1147CrossRefPubMedGoogle Scholar
  34. 34.
    Devore EE, Grodstein F, van Rooij FJ, Hofman A, Rosner B, Stampfer MJ, Witteman JC, Breteler MM (2009) Dietary intake of fish and omega-3 fatty acids in relation to long-term dementia risk. Am J Clin Nutr 90(1):170–176. doi: 10.3945/ajcn.2008.27037 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    van de Rest O, Geleijnse JM, Kok FJ, van Staveren WA, Dullemeijer C, Olderikkert MG, Beekman AT, de Groot CP (2008) Effect of fish oil on cognitive performance in older subjects: a randomized, controlled trial. Neurology 71(6):430–438. doi: 10.1212/01.wnl.0000324268.45138.86 CrossRefPubMedGoogle Scholar
  36. 36.
    van de Rest O, Spiro A 3rd, Krall-Kaye E, Geleijnse JM, de Groot LC, Tucker KL (2009) Intakes of (n-3) fatty acids and fatty fish are not associated with cognitive performance and 6-year cognitive change in men participating in the Veterans Affairs Normative Aging Study. J Nutr 139(12):2329–2336. doi: 10.3945/jn.109.113647 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zeilmaker MJ, Hoekstra J, van Eijkeren JC, de Jong N, Hart A, Kennedy M, Owen H, Gunnlaugsdottir H (2013) Fish consumption during child bearing age: a quantitative risk-benefit analysis on neurodevelopment. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 54:30–34. doi: 10.1016/j.fct.2011.10.068 CrossRefGoogle Scholar
  38. 38.
    Nielsen SJ, Kit BK, Aoki Y, Ogden CL (2014) Seafood consumption and blood mercury concentrations in adults aged ≥20 years, 2007–2010. Am J Clin Nutr 99(5):1066–1070. doi: 10.3945/ajcn.113.077081 CrossRefPubMedGoogle Scholar
  39. 39.
    Domenichiello AF, Kitson AP, Bazinet RP (2015) Is docosahexaenoic acid synthesis from alpha-linolenic acid sufficient to supply the adult brain? Prog Lipid Res 59:54–66. doi: 10.1016/j.plipres.2015.04.002 CrossRefPubMedGoogle Scholar
  40. 40.
    Ngandu T, Lehtisalo J, Solomon A, Levalahti E, Ahtiluoto S, Antikainen R, Backman L, Hanninen T, Jula A, Laatikainen T, Lindstrom J, Mangialasche F, Paajanen T, Pajala S, Peltonen M, Rauramaa R, Stigsdotter-Neely A, Strandberg T, Tuomilehto J, Soininen H, Kivipelto M (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385(9984):2255–2263. doi: 10.1016/S0140-6736(15)60461-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Centre for Nutrition, Prevention and Health Services (VPZ)National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
  2. 2.Department of Gastroenterology and HepatologyUniversity Medical Centre Utrecht (UMCU)UtrechtThe Netherlands
  3. 3.The School of Public HealthImperial College LondonLondonUK
  4. 4.Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
  5. 5.Julius Centre for Health Sciences and Primary CareUniversity Medical Centre Utrecht (UMCU)UtrechtThe Netherlands

Personalised recommendations