European Journal of Nutrition

, Volume 56, Issue 7, pp 2215–2244 | Cite as

The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature

  • Narges Tajik
  • Mahboubeh Tajik
  • Isabelle Mack
  • Paul EnckEmail author


Chlorogenic acid (CGA), an important biologically active dietary polyphenol, is produced by certain plant species and is a major component of coffee. Reduction in the risk of a variety of diseases following CGA consumption has been mentioned in recent basic and clinical research studies. This systematic review discusses in vivo animal and human studies of the physiological and biochemical effects of chlorogenic acids (CGAs) on biomarkers of chronic disease. We searched PubMed, Embase, Amed and Scopus using the following search terms: (“chlorogenic acid” OR “green coffee bean extract”) AND (human OR animal) (last performed on April 1st, 2015) for relevant literature on the in vivo effects of CGAs in animal and human models, including clinical trials on cardiovascular, metabolic, cancerogenic, neurological and other functions. After exclusion of editorials and letters, uncontrolled observations, duplicate and not relevant publications the remaining 94 studies have been reviewed. The biological properties of CGA in addition to its antioxidant and anti-inflammatory effects have recently been reported. It is postulated that CGA is able to exert pivotal roles on glucose and lipid metabolism regulation and on the related disorders, e.g. diabetes, cardiovascular disease (CVD), obesity, cancer, and hepatic steatosis. The wide range of potential health benefits of CGA, including its anti-diabetic, anti-carcinogenic, anti-inflammatory and anti-obesity impacts, may provide a non-pharmacological and non-invasive approach for treatment or prevention of some chronic diseases. In this study, the effects of CGAs on different aspects of health by reviewing the related literatures have been discussed.


Green coffee bean extracts Chlorogenic acid Antioxidant Anti-inflammatory 



Funding for this review was provided by the Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Tuebingen, Germany.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Haskell CF, Kennedy DO, Milne AL, Wesnes KA, Scholey AB (2008) The effects of l-theanine, caffeine and their combination on cognition and mood. Biol Psychol 77(2):113–122CrossRefGoogle Scholar
  2. 2.
    Haskell CF, Kennedy DO, Wesnes KA, Scholey AB (2005) Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology (Berl) 179(4):813–825CrossRefGoogle Scholar
  3. 3.
    Rees K, Allen D, Lader M (1999) The influences of age and caffeine on psychomotor and cognitive function. Psychopharmacology (Berl) 145(2):181–188CrossRefGoogle Scholar
  4. 4.
    Zhang L-Y, Cosma G, Gardner H, Vallyathan V, Castranova V (2003) Effect of chlorogenic acid on hydroxyl radical. Mol Cell Biochem 247(1–2):205–210CrossRefGoogle Scholar
  5. 5.
    Nardini M, Cirillo E, Natella F, Scaccini C (2002) Absorption of phenolic acids in humans after coffee consumption. J Agric Food Chem 50(20):5735–5741CrossRefGoogle Scholar
  6. 6.
    Clifford MN (2000) Chlorogenic acids and other cinnamates–nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80(7):1033–1043CrossRefGoogle Scholar
  7. 7.
    Perrone D, Donangelo R, Donangelo CM, Farah A (2010) Modeling weight loss and chlorogenic acids content in coffee during roasting. J Agric Food Chem 58 (23):12238–12243CrossRefGoogle Scholar
  8. 8.
    Lafay S G-IA, Manach C, Morand C, Besson C, Scalbert A. (2006) Chlorogenic acid is absorbed in its intact form in the stomach of rats. J Nutr 136 (5):1192–1197Google Scholar
  9. 9.
    Konishi YKS (2004) Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal caco-2 cell monolayers. J Agric Food Chem 52 (9):2518–2526CrossRefGoogle Scholar
  10. 10.
    Monteiro M, Farah A, Perrone D, Trugo LC, Donangelo C (2007) Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J Nutr 137 (10):2196–2201Google Scholar
  11. 11.
    Clifford MN (1999) Chlorogenic acids and other cinnamates–nature, occurrence and dietary burden. J Sci Food Agric 79(3):362–372CrossRefGoogle Scholar
  12. 12.
    Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747Google Scholar
  13. 13.
    Renouf M, Guy PA, Marmet C, Fraering AL, Longet K, Moulin J, Enslen M, Barron D, Dionisi F, Cavin C (2010) Measurement of caffeic and ferulic acid equivalents in plasma after coffee consumption: small intestine and colon are key sites for coffee metabolism. Mol Nutr Food Res 54 (6):760–766CrossRefGoogle Scholar
  14. 14.
    Clifford MN WJ (1976) The measurement of feruloylquinic acids and caffeoylquinic acids in coffee beans. Development of the technique and its preliminary application to green coffee beans. J Sci Food Agric 27(1):73–84CrossRefGoogle Scholar
  15. 15.
    Perrone D, Farah A, Donangelo CM, de Paulis T, Martin PR (2008) Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars. Food Chem 106:859–867CrossRefGoogle Scholar
  16. 16.
    Iziar A, Ludwig LS, B Caemmerer, LW Kroh, MP De Peñ, C Cid (2012) Extraction of coffee antioxidants: Impact of brewing time and method. Food Res Int 48 (1):57–64CrossRefGoogle Scholar
  17. 17.
    Dos Santos MD, Almeida MC, Lopes NP, De Souza GEP (2006) Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol Pharm Bull 29(11):2236CrossRefGoogle Scholar
  18. 18.
    Tsuchiya T, Suzuki O, Igarashi K (1996) Protective effects of chlorogenic acid on paraquat-induced oxidative stress in rats. Biosci Biotechnol Biochem 60:765–801CrossRefGoogle Scholar
  19. 19.
    Johnston KL, Clifford MN, Morgan LM (2003) Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 78(4):728–733Google Scholar
  20. 20.
    Thom E (2007) The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J Int Med Res 35(6):900–908CrossRefGoogle Scholar
  21. 21.
    Kwon S-H, Lee H-K, Kim J-A, Hong S-I, Kim H-C, Jo T-H, Park Y-I, Lee C-K, Kim Y-B, Lee S-Y (2010) Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 649(1):210–217CrossRefGoogle Scholar
  22. 22.
    Lapchak PA (2007) The phenylpropanoid micronutrient chlorogenic acid improves clinical rating scores in rabbits following multiple infarct ischemic strokes: synergism with tissue plasminogen activator. Exp Neurol 205(2):407–413CrossRefGoogle Scholar
  23. 23.
    Suzuki A, Kagawa D, Ochiai R, Tokimitsu I, Saito I (2002) Green coffee bean extract and its metabolites have a hypotensive effect in spontaneously hypertensive rats. Hypertens Res 25(1):99–107CrossRefGoogle Scholar
  24. 24.
    Suzuki A, Fujii A, Yamamoto N, Yamamoto M, Ohminami H, Kameyama A, Shibuya Y, Nishizawa Y, Tokimitsu I, Saito I (2006) Improvement of hypertension and vascular dysfunction by hydroxyhydroquinone-free coffee in a genetic model of hypertension. FEBS Lett 580 (9):2317–2322CrossRefGoogle Scholar
  25. 25.
    Onakpoya I, Terry R, Ernst E (2010) The use of green coffee extract as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. Gastroenterol Res Pract 2011Google Scholar
  26. 26.
    Suzuki A, Fujii A, Jokura H, Tokimitsu I, Hase T, Saito I (2008) Hydroxyhydroquinone interferes with the chlorogenic acid-induced restoration of endothelial function in spontaneously hypertensive rats. Am J hypertens 21(1):23–27CrossRefGoogle Scholar
  27. 27.
    Kanegae MP, da Fonseca LM, Brunetti IL, de Oliveira Silva S, Ximenes VF (2007) The reactivity of ortho-methoxy-substituted catechol radicals with sulfhydryl groups: contribution for the comprehension of the mechanism of inhibition of NADPH oxidase by apocynin. Biochem Pharmacol 74(3):457–464CrossRefGoogle Scholar
  28. 28.
    Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, Sugawara M, Iseki K (2011) In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 403(1):136–138CrossRefGoogle Scholar
  29. 29.
    Kozuma K, Tsuchiya S, Kohori J, Hase T, Tokimitsu I (2005) Antihypertensive effect of green coffee bean extract on mildly hypertensive subjects. Hypertens Res 28(9):711–718CrossRefGoogle Scholar
  30. 30.
    Watanabe T, Arai Y, Mitsui Y, Kusaura T, Okawa W, Kajihara Y, Saito I (2006) The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clin Exp Hypertens 28(5):439–449CrossRefGoogle Scholar
  31. 31.
    Yamaguchi T, Chikama A, Mori K, Watanabe T, Shioya Y, Katsuragi Y, Tokimitsu I (2008) Hydroxyhydroquinone-free coffee: a double-blind, randomized controlled dose–response study of blood pressure. Nutr Metab Cardiovasc Dis 18 (6):408–414CrossRefGoogle Scholar
  32. 32.
    Ochiai R, Jokura H, Suzuki A, Tokimitsu I, Ohishi M, Komai N, Rakugi H, Ogihara T (2004) Green coffee bean extract improves human vasoreactivity. Hypertens Res 27(10):731–737CrossRefGoogle Scholar
  33. 33.
    Mubarak A, Bondonno CP, Liu AH, Considine MJ, Rich L, Mas E, Croft KD, Hodgson JM (2012) Acute effects of chlorogenic acid on nitric oxide status, endothelial function, and blood pressure in healthy volunteers: a randomized trial. J Agric Food Chem 60(36):9130–9136CrossRefGoogle Scholar
  34. 34.
    Revuelta-Iniesta R, Al-Dujaili E (2014) Consumption of green coffee reduces blood pressure and body composition by influencing 11β-HSD1 enzyme activity in healthy individuals: a pilot crossover study using green and black coffee. BioMed Res Int 2014:482704. doi: 10.1155/2014/482704 CrossRefGoogle Scholar
  35. 35.
    Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10):840–844CrossRefGoogle Scholar
  36. 36.
    Dentali F, Squizzato A, Ageno W (2009) The metabolic syndrome as a risk factor for venous and arterial thrombosis. In: Seminars in thrombosis and hemostasis. vol 5. p 451Google Scholar
  37. 37.
    Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5 (6):493–506CrossRefGoogle Scholar
  38. 38.
    Taguchi K, Hida M, Matsumoto T, Ikeuchi-Takahashi Y, Onishi H, Kobayashi T (2014) Effect of short-term polyphenol treatment on endothelial dysfunction and thromboxane A2 levels in streptozotocin-induced diabetic mice. Biol Pharm Bull 37:1056–1061CrossRefGoogle Scholar
  39. 39.
    Suzuki A, Yamamoto N, Jokura H, Yamamoto M, Fujii A, Tokimitsu I, Saito I (2006) Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats. J Hypertens 24(6):1065–1073CrossRefGoogle Scholar
  40. 40.
    Cheong JLK, Croft K, Henry P, Matthews V, Hodgson J, Ward N (2014) Green coffee polyphenols do not attenuate features of the metabolic syndrome and improve endothelial function in mice fed a high fat diet. Arch Biochem Biophys 559:46–52CrossRefGoogle Scholar
  41. 41.
    Taguchi K, Hida M, Matsumoto T, Ikeuchi-Takahashi Y, Onishi H, Kobayashi T (2014) Effect of short-term polyphenol treatment on endothelial dysfunction and thromboxane A2 levels in streptozotocin-induced diabetic mice. Biol Pharm Bull 37(6):1056–1061CrossRefGoogle Scholar
  42. 42.
    Kanno Y, Watanabe R, Zempo H, Ogawa M, Suzuki J-i, Isobe M (2012) Chlorogenic Acid attenuates ventricular remodeling after myocardial infarction in mice. Int Heart J 54(3):176–180CrossRefGoogle Scholar
  43. 43.
    McDowell IF, Lang D (2000) Homocysteine and endothelial dysfunction: a link with cardiovascular disease. J Nutr 130(2):369S–372SGoogle Scholar
  44. 44.
    Olthof MR, Hollman PC, Zock PL, Katan MB (2001) Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am J Clin Nutr 73(3):532–538Google Scholar
  45. 45.
    Rodriguez de Sotillo DV, Hadley M (2002) Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J Nutr Biochem 13(12):717–726CrossRefGoogle Scholar
  46. 46.
    Goldstein JL, Ho Y, Basu SK, Brown MS (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci 76(1):333–337CrossRefGoogle Scholar
  47. 47.
    Yukawa G, Mune M, Otani H, Tone Y, Liang X-M, Iwahashi H, Sakamoto W (2004) Effects of coffee consumption on oxidative susceptibility of low-density lipoproteins and serum lipid levels in humans. BioChemistry 69(1):70–74Google Scholar
  48. 48.
    Bagdas D, Cam Etoz B, Inan Ozturkoglu S, Cinkilic N, Ozyigit MO, Gul Z, Isbil Buyukcoskun N, Ozluk K, Gurun MS (2014) Effects of systemic chlorogenic acid on random-pattern dorsal skin flap survival in diabetic rats. Biol Pharm Bull 37(3):361–370CrossRefGoogle Scholar
  49. 49.
    Huang K, Liang Xc, Zhong Yl, He Wy, Wang Z (2014) 5-Caffeoylquinic acid decreases diet-induced obesity in rats by modulating PPARα and LXRα transcription. J Sci Food Agric 95:1903–1910CrossRefGoogle Scholar
  50. 50.
    Panchal SK, Poudyal H, Waanders J, Brown L (2012) Coffee extract attenuates changes in cardiovascular and hepatic structure and function without decreasing obesity in high-carbohydrate, high-fat diet-fed male rats. J Nutr 142(4):690–697CrossRefGoogle Scholar
  51. 51.
    Zhang L, Chang C, Liu Y, Chen Z (2011) Effect of chlorogenic acid on disordered glucose and lipid metabolism in db/db mice and its mechanism. Zhongguo Yi Xue Ke Xue Yuan Xue Bao Acta Academiae Medicinae Sinicae 33 (3):281–286Google Scholar
  52. 52.
    Li S-Y, Chang C-Q, Ma F-Y, Yu C-L (2009) Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator-activated receptor-α in golden hamsters fed on high fat diet. Biomed Environ Sci 22(2):122–129CrossRefGoogle Scholar
  53. 53.
    Wan CW, Wong CNY, Pin WK, Wong MHY, Kwok CY, Chan RYK, Yu PHF, Chan SW (2013) Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-α in hypercholesterolemic rats induced with a high-cholesterol diet. Phytother Res 27(4):545–551CrossRefGoogle Scholar
  54. 54.
    Karthikesan K, Pari L, Menon V (2010) Antihyperlipidemic effect of chlorogenic acid and tetrahydrocurcumin in rats subjected to diabetogenic agents. Chem Biol Interact 188 (3):643–650CrossRefGoogle Scholar
  55. 55.
    Frank J, Kamal-Eldin A, Razdan A, Lundh T, Vessby B (2003) The dietary hydroxycinnamate caffeic acid and its conjugate chlorogenic acid increase vitamin E and cholesterol concentrations in Sprague–Dawley rats. J Agric Food Chem 51(9):2526–2531CrossRefGoogle Scholar
  56. 56.
    Mubarak A, Hodgson JM, Considine MJ, Croft KD, Matthews VB (2013) Supplementation of a high-fat diet with chlorogenic acid is associated with insulin resistance and hepatic lipid accumulation in mice. J Agric Food Chem 61(18):4371–4378CrossRefGoogle Scholar
  57. 57.
    Lecoultre V, Carrel G, Egli L, Binnert C, Boss A, MacMillan EL, Kreis R, Boesch C, Darimont C, Tappy L (2014) Coffee consumption attenuates short-term fructose-induced liver insulin resistance in healthy men. Am J Clin Nutr 99(2):268–275CrossRefGoogle Scholar
  58. 58.
    Kamtchouing P, Kahpui S, Dzeufiet P-DD, Tedong L, Asongalem E, Dimo T (2006) Anti-diabetic activity of methanol/methylene chloride stem bark extracts of Terminalia superba and Canarium schweinfurthii on streptozotocin-induced diabetic rats. J Ethnopharmacol 104(3):306–309CrossRefGoogle Scholar
  59. 59.
    Lin WY, Xaiver Pi-Sunyer F, Chen CC, Davidson LE, Liu CS, Li TC, Wu MF, Li CI, Chen W, Lin CC (2011) Coffee consumption is inversely associated with type 2 diabetes in Chinese. Eur J Clin Invest 41(6):659–666CrossRefGoogle Scholar
  60. 60.
    Pereira MA, Parker ED, Folsom AR (2006) Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28,812 postmenopausal women. Arch Intern Med 166(12):1311–1316CrossRefGoogle Scholar
  61. 61.
    Van Dam RM, Feskens EJ (2002) Coffee consumption and risk of type 2 diabetes mellitus. The Lancet 360(9344):1477–1478CrossRefGoogle Scholar
  62. 62.
    van Dam RM (2008) Coffee consumption and risk of type 2 diabetes, cardiovascular diseases, and cancer. Appl Physiol Nutr Metab 33(6):1269–1283CrossRefGoogle Scholar
  63. 63.
    Battram DS, Arthur R, Weekes A, Graham TE (2006) The glucose intolerance induced by caffeinated coffee ingestion is less pronounced than that due to alkaloid caffeine in men. J Nutr 136(5):1276–1280Google Scholar
  64. 64.
    Battram D, Graham T, Dela F (2007) Caffeine’s impairment of insulin-mediated glucose disposal cannot be solely attributed to adrenaline in humans. J Physiol 583(3):1069–1077CrossRefGoogle Scholar
  65. 65.
    Thong FS, Derave W, Kiens B, Graham TE, Ursø B, Wojtaszewski JF, Hansen BF, Richter EA (2002) Caffeine-induced impairment of insulin action but not insulin signaling in human skeletal muscle is reduced by exercise. Diabetes 51(3):583–590CrossRefGoogle Scholar
  66. 66.
    Huxley R, Lee CMY, Barzi F, Timmermeister L, Czernichow S, Perkovic V, Grobbee DE, Batty D, Woodward M (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 169(22):2053–2063CrossRefGoogle Scholar
  67. 67.
    McCarty MF (2005) A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med Hypotheses 64(4):848–853CrossRefGoogle Scholar
  68. 68.
    Karthikesan K, Pari L, Menon VP (2010) Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats. Gen Physiol Biophys 29(1):23–30CrossRefGoogle Scholar
  69. 69.
    Karthikesan K, Pari L, Menon VP (2010) Protective effect of tetrahydrocurcumin and chlorogenic acid against streptozotocin–nicotinamide generated oxidative stress induced diabetes. J Funct Foods 2(2):134–142CrossRefGoogle Scholar
  70. 70.
    Pari L, Karthikesan K, Menon VP (2010) Comparative and combined effect of chlorogenic acid and tetrahydrocurcumin on antioxidant disparities in chemical induced experimental diabetes. Mol Cell Biochem 341(1–2):109–117CrossRefGoogle Scholar
  71. 71.
    Herling AW, Schwab D, Burger H-J, Maas J, Hammerl R, Schmidt D, Strohschein S, Hemmerle H, Schubert G, Petry S (2002) Prolonged blood glucose reduction in mrp-2 deficient rats (GY/TR-) by the glucose-6-phosphate translocase inhibitor S 3025. Biochim Biophys Acta (BBA)-Gen Subj 1569 (1):105–110CrossRefGoogle Scholar
  72. 72.
    Bassoli BK, Cassolla P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigorria CL, Bazotte RB, da Silva RSdS, de Souza HM (2008) Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct 26(3):320–328CrossRefGoogle Scholar
  73. 73.
    Van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, Van Dam RM (2009) Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 32 (6):1023–1025CrossRefGoogle Scholar
  74. 74.
    Ahrens MJ, Thompson DL (2013) Effect of Emulin on blood glucose in type 2 diabetics. J Med Food 16(3):211–215CrossRefGoogle Scholar
  75. 75.
    Tousch D, Lajoix A-D, Hosy E, Azay-Milhau J, Ferrare K, Jahannault C, Cros G, Petit P (2008) Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochem Biophys Res Commun 377(1):131–135CrossRefGoogle Scholar
  76. 76.
    Ong KW, Hsu A, Tan BKH (2012) Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PloS one 7(3):e32718CrossRefGoogle Scholar
  77. 77.
    Ong KW, Hsu A, Tan BKH (2013) Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem Pharmacol 85(9):1341–1351CrossRefGoogle Scholar
  78. 78.
    Shin JY, Sohn J, Park KH (2013) Chlorogenic acid decreases retinal vascular hyperpermeability in diabetic rat model. J Korean Med Sci 28(4):608–613CrossRefGoogle Scholar
  79. 79.
    Herling AW, Burger H-J, Schubert G, Hemmerle H, Schaefer H-L, Kramer W (1999) Alterations of carbohydrate and lipid intermediary metabolism during inhibition of glucose-6-phosphatase in rats. Eur J Pharmacol 386(1):75–82CrossRefGoogle Scholar
  80. 80.
    Simon C, Herling AW, Preibisch G, Burger H-J (2000) Upregulation of hepatic glucose 6-phosphatase gene expression in rats treated with an inhibitor of glucose-6-phosphate translocase. Arch Biochem Biophys 373(2):418–428CrossRefGoogle Scholar
  81. 81.
    van Dijk TH, van der Sluijs FH, Wiegman CH, Baller JF, Gustafson LA, Burger H-J, Herling AW, Kuipers F, Meijer AJ, Reijngoud D-J (2001) Acute inhibition of hepatic glucose-6-phosphatase Does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats A PHARMACOLOGICAL STUDY WITH THE CHLOROGENIC ACID DERIVATIVE S4048. J Biol Chem 276(28):25727–25735CrossRefGoogle Scholar
  82. 82.
    Ma Y GM, Liu D (2015) Chlorogenic Acid Improves High Fat Diet-Induced Hepatic Steatosis and Insulin Resistance in Mice. Pharm Res 32(4):1200–1209CrossRefGoogle Scholar
  83. 83.
    Jung UJ, Lee M-K, Park YB, Jeon S-M, Choi M-S (2006) Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther 318(2):476–483CrossRefGoogle Scholar
  84. 84.
    Rodriguez de Sotillo DV, Hadley M, Sotillo JE (2006) Insulin receptor exon 11+/– is expressed in Zucker (fa/fa) rats, and chlorogenic acid modifies their plasma insulin and liver protein and DNA. J Nutr Biochem 17(1):63–71CrossRefGoogle Scholar
  85. 85.
    Tunnicliffe JM, Eller LK, Reimer RA, Hittel DS, Shearer J (2011) Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats. Appl Physiol Nutr Metab 36(5):650–659CrossRefGoogle Scholar
  86. 86.
    Olthof MR, van Dijk AE, Deacon CF, Heine RJ, van Dam RM (2011) Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on incretin hormones. Nutr Metab (Lond) 8 (10)Google Scholar
  87. 87.
    Ogden CL, Yanovski SZ, Carroll MD, Flegal KM (2007) The epidemiology of obesity. Gastroenterology 132(6):2087–2102CrossRefGoogle Scholar
  88. 88.
    Lopez-Garcia E, van Dam RM, Rajpathak S, Willett WC, Manson JE, Hu FB (2006) Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr 83(3):674–680Google Scholar
  89. 89.
    Tunnicliffe JM, Shearer J (2008) Coffee, glucose homeostasis, and insulin resistance: physiological mechanisms and mediators. Appl Physiol Nutr Metab 33(6):1290–1300CrossRefGoogle Scholar
  90. 90.
    Greenberg J, Axen K, Schnoll R, Boozer C (2005) Coffee, tea and diabetes: the role of weight loss and caffeine. Int J Obes 29(9):1121–1129CrossRefGoogle Scholar
  91. 91.
    Narita Y, Inouye K (2009) Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas α-amylase isozymes I and II. J Agric Food Chem 57(19):9218–9225CrossRefGoogle Scholar
  92. 92.
    Vinson JA, Burnham BR, Nagendran MV (2012) Randomized, double-blind, placebo-controlled, linear dose, crossover study to evaluate the efficacy and safety of a green coffee bean extract in overweight subjects. Diabetes, metabolic syndrome and obesity: targets and therapy 5:21Google Scholar
  93. 93.
    Flanagan J, Bily A, Rolland Y, Roller M (2014) Lipolytic activity of Svetol®, a decaffeinated green coffee bean extract. Phytother Res 28(6):946–948CrossRefGoogle Scholar
  94. 94.
    Shimoda H, Seki E, Aitani M (2006) Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement Altern Med 6(1):9CrossRefGoogle Scholar
  95. 95.
    Tanaka K, Nishizono S, Tamaru S, Kondo M, Shimoda H, Tanaka J, Okada T (2009) Anti-obesity and hypotriglyceridemic properties of coffee bean extract in SD rats. Food Sci Technol Res 15(2):147CrossRefGoogle Scholar
  96. 96.
    Kobayashi-Hattori K, Mogi A, Matsumoto Y, Takita T (2005) Effect of caffeine on the body fat and lipid metabolism of rats fed on a high-fat diet. Biosci Biotechnol Biochem 69(11):2219–2223CrossRefGoogle Scholar
  97. 97.
    Song SJ, Choi S, Park T (2014) Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice. Evid-Based Complement Alternat Med 2014:718379. doi: 10.1155/2014/718379 Google Scholar
  98. 98.
    Cho A-S, Jeon S-M, Kim M-J, Yeo J, Seo K-I, Choi M-S, Lee M-K (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 48(3):937–943CrossRefGoogle Scholar
  99. 99.
    Dellalibera O, Lemaire B, Lafay S (2006) Le Svetol®, un extrait de café vert décaféiné, induit une perte de poids et augmente le ratio masse maigre sur masse grasse chez des volontaires en surcharge pondérale. Phytotherapie 4 (4):194–197CrossRefGoogle Scholar
  100. 100.
    Bakuradze T, Boehm N, Janzowski C, Lang R, Hofmann T, Stockis JP, Albert FW, Stiebitz H, Bytof G, Lantz I (2011) Antioxidant-rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: results from an intervention study. Mol Nutr Food Res 55 (5):793–797CrossRefGoogle Scholar
  101. 101.
    Kotyczka C, Boettler U, Lang R, Stiebitz H, Bytof G, Lantz I, Hofmann T, Marko D, Somoza V (2011) Dark roast coffee is more effective than light roast coffee in reducing body weight, and in restoring red blood cell vitamin E and glutathione concentrations in healthy volunteers. Mol Nutr Food Res 55 (10):1582–1586CrossRefGoogle Scholar
  102. 102.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84CrossRefGoogle Scholar
  103. 103.
    Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3(4):276–285CrossRefGoogle Scholar
  104. 104.
    Newmark HL (1985) A hypothesis for dietary components as blocking agents of chemical carcinogenesis: plant phenolics and pyrrole pigments.Google Scholar
  105. 105.
    Mori H, Tanaka T, Sugie S, Yoshimi N, Kawamori T, Hirose Y, Ohnishi M (1997) Chemoprevention by naturally occurring and synthetic agents in oral, liver, and large bowel carcinogenesis. J Cell Biochem 67(S27):35–41CrossRefGoogle Scholar
  106. 106.
    Kasai H, Fukada S, Yamaizumi Z, Sugie S, Mori H (2000) Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem Toxicol 38(5):467–471CrossRefGoogle Scholar
  107. 107.
    Hoelzl C, Knasmüller S, Wagner KH, Elbling L, Huber W, Kager N, Ferk F, Ehrlich V, Nersesyan A, Neubauer O (2010) Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res 54 (12):1722–1733CrossRefGoogle Scholar
  108. 108.
    Bakuradze T, Baum M, Eisenbrand G, Janzowski C (2011) 4.2 Coffee and coffee compounds are effective antioxidants in human cells and in vivo. In: Risk Assess Phytochem Food Novel Approach, pp 364–368Google Scholar
  109. 109.
    Newmark H (1987) Plant phenolics as inhibitors of mutational and precarcinogenic events. Can J Physiol Pharmacol 65(3):461–466CrossRefGoogle Scholar
  110. 110.
    Stich HF, Rosin MP (1984) Naturally occurring phenolics as antimutagenic and anticarcinogenic agents. In: Nutritional and toxicological aspects of food safety. Springer, Berlin, pp 1–29Google Scholar
  111. 111.
    Mori H, Tanaka T, Shima H, Kuniyasu T, Takahashi M (1986) Inhibitory effect of chlorogenic acid on methylazoxymethanol acetate-induced carcinogenesis in large intestine and liver of hamsters. Cancer Lett 30(1):49–54CrossRefGoogle Scholar
  112. 112.
    Morishita Y, Yoshimi N, Kawabata K, Matsunaga K, Sugie S, Tanaka T, Mori H (1997) Regressive effects of various chemopreventive agents on azoxymethane-induced aberrant crypt foci in the rat colon. Cancer Sci 88(9):815–820Google Scholar
  113. 113.
    Matsunaga K, Katayama M, Sakata K, Kuno T, Yoshida K, Yamada Y, Hirose Y, Yoshimi N, Mori H (2002) Inhibitory effects of chlorogenic acid on azoxymethane-induced colon carcinogenesis in male F344 rats. Asian pac J cancer prev 3 (2):163–166Google Scholar
  114. 114.
    Tanaka T, Kojima T, Kawamori T, Wang A, Suzui M, Okamoto K, Mori H (1993) Inhibition of 4-nitroquinoline-1-oxide-induced rat tongue carcinogenesis by the naturally occurring plant phenolics caffeic, ellagic, chlorogenic and ferulic acids. Carcinogenesis 14(7):1321–1325CrossRefGoogle Scholar
  115. 115.
    Tanaka T, Nishikawa A, Shima H, Sugie S, Shinoda T, Yoshimi N, Iwata H, Mori H (1990) Inhibitory effects of chlorogenic acid, reserpine, polyprenoic acid (E-5166), or coffee on hepatocarcinogenesis in rats and hamsters. In: Antimutagenesis and anticarcinogenesis mechanisms II. Springer, Berlin, pp 429–440CrossRefGoogle Scholar
  116. 116.
    Huang M-T, Smart RC, Wong C-Q, Conney AH (1988) Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 48(21):5941–5946Google Scholar
  117. 117.
    Shimizu M, Yoshimi N, Yamada Y, Matsunaga K, Kawabata K, Hara A, Moriwaki H, Mori H (1999) Suppressive effects of chlorogenic acid on N-methyl-N-nitrosourea-induced glandular stomach carcinogenesis in male F344 rats. J Toxicol Sci 24(5):433–439CrossRefGoogle Scholar
  118. 118.
    Boettler U, Volz N, Pahlke G, Teller N, Kotyczka C, Somoza V, Stiebitz H, Bytof G, Lantz I, Lang R (2011) Coffees rich in chlorogenic acid or N-methylpyridinium induce chemopreventive phase II-enzymes via the Nrf2/ARE pathway in vitro and in vivo. Mol Nutr Food Res 55 (5):798–802CrossRefGoogle Scholar
  119. 119.
    Bakuradze T, Lang R, Hofmann T, Eisenbrand G, Schipp D, Galan J, Richling E (2014) Consumption of a dark roast coffee decreases the level of spontaneous DNA strand breaks: a randomized controlled trial. Eur J Nutr 54(1):149–56. doi: 10.1007/s00394-014-0696-x
  120. 120.
    Volz N, Boettler U, Winkler S, Teller N, Schwarz C, Bakuradze T, Eisenbrand G, Haupt L, Griffiths LR, Stiebitz H (2012) Effect of coffee combining green coffee bean constituents with typical roasting products on the Nrf2/ARE pathway in vitro and in vivo. J Agric Food Chem 60(38):9631–9641CrossRefGoogle Scholar
  121. 121.
    Han J, Miyamae Y, Shigemori H, Isoda H (2010) Neuroprotective effect of 3, 5-di-O-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1. Neuroscience 169(3):1039–1045CrossRefGoogle Scholar
  122. 122.
    Jang YJ, Kim J, Shim J, Kim C-Y, Jang J-H, Lee KW, Lee HJ (2013) Decaffeinated coffee prevents scopolamine-induced memory impairment in rats. Behav Brain Res 245:113–119CrossRefGoogle Scholar
  123. 123.
    Tu Q, Tang X, Hu Z (2005) Chlorogenic acid protection of neuronal nitric oxide synthase-positive neurons in the hippocampus of mice with impaired learning and memory.Google Scholar
  124. 124.
    Bouayed J, Rammal H, Dicko A, Younos C, Soulimani R (2007) Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J Neurol Sci 262(1):77–84CrossRefGoogle Scholar
  125. 125.
    Czok G, Lang K (1961) On the stimulating effect of chlorogenic acid. Arzneimittelforschung 11:448Google Scholar
  126. 126.
    Hach B, Heim F (1971) Comparative studieson the central stimulating effects of caffeie and chlorogenic acid in white mice. Arzneimittelforschung 2:23–25Google Scholar
  127. 127.
    Ohnishi R, Ito H, Iguchi A, Shinomiya K, Kamei C, Hatano T, Yoshida T (2006) Effects of chlorogenic acid and its metabolites on spontaneous locomotor activity in mice. Biosci Biotechnol Biochem 70(10):2560CrossRefGoogle Scholar
  128. 128.
    Tessarollo L (1998) Pleiotropic functions of neurotrophins in development. Cytokine Growth Factor Rev 9 (2):125–137CrossRefGoogle Scholar
  129. 129.
    Yamamoto M, Sobue G, Yamamoto K, Mitsuma T (1996) Expression of mRNAs for neurotrophic factors (NGF, BDNF, NT-3, and GDNF) and their receptors (p75 NGFR, TrkA, TrkB, and TrkC) in the adult human peripheral nervous system and nonneural tissues. Neurochem Res 21(8):929–938CrossRefGoogle Scholar
  130. 130.
    Behl C, Moosmann B (2002) Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. Free Radical Biol Med 33(2):182–191CrossRefGoogle Scholar
  131. 131.
    de Paulis T, Schmidt DE, Bruchey AK, Kirby MT, McDonald MP, Commers P, Lovinger DM, Martin PR (2002) Dicinnamoylquinides in roasted coffee inhibit the human adenosine transporter. Eur J Pharmacol 442(3):215–223CrossRefGoogle Scholar
  132. 132.
    Reyes-Izquierdo T, Nemzer B, Shu C, Huynh L, Argumedo R, Keller R, Pietrzkowski Z (2013) Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects. Br J Nutr 110(03):420–425CrossRefGoogle Scholar
  133. 133.
    Cropley V, Croft R, Silber B, Neale C, Scholey A, Stough C, Schmitt J (2012) Does coffee enriched with chlorogenic acids improve mood and cognition after acute administration in healthy elderly? A pilot study. Psychopharmacology (Berl) 219(3):737–749CrossRefGoogle Scholar
  134. 134.
    Camfield DA, Silber BY, Scholey AB, Nolidin K, Goh A, Stough C (2013) A randomised placebo-controlled trial to differentiate the acute cognitive and mood effects of chlorogenic acid from decaffeinated coffee. PloS One 8(12):e82897CrossRefGoogle Scholar
  135. 135.
    Shen W, Qi R, Zhang J, Wang Z, Wang H, Hu C, Zhao Y, Bie M, Wang Y, Fu Y (2012) Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Res Bull 88(5):487–494CrossRefGoogle Scholar
  136. 136.
    Lee K, Lee J-S, Jang H-J, Kim S-M, Chang MS, Park SH, Kim KS, Bae J, Park J-W, Lee B (2012) Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia. Eur J Pharmacol 689(1):89–95CrossRefGoogle Scholar
  137. 137.
    Cho ES, Jang YJ, Hwang MK, Kang NJ, Lee KW, Lee HJ (2009) Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals. Mutat Res 661(1):18–24CrossRefGoogle Scholar
  138. 138.
    Jin U-H, Lee J-Y, Kang S-K, Kim J-K, Park W-H, Kim J-G, Moon S-K, Kim C-H (2005) A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid), is a new type and strong matrix metalloproteinase-9 inhibitor: Isolation and identification from methanol extract of Euonymus alatus. Life Sci 77(22):2760–2769CrossRefGoogle Scholar
  139. 139.
    Li Y, Shi W, Li Y, Zhou Y, Hu X, Song C, Ma H, Wang C, Li Y (2008) Neuroprotective effects of chlorogenic acid against apoptosis of PC12 cells induced by methylmercury. Environ Toxicol Pharmacol 26(1):13–21CrossRefGoogle Scholar
  140. 140.
    Moreira MEdC, Pereira RGFA, Dias DF, Gontijo VS, Vilela FC, de Moraes GdOI, Giusti-Paiva A, dos Santos MH (2013) Anti-inflammatory effect of aqueous extracts of roasted and green Coffea arabica L. J Funct Foods 5(1):466–474CrossRefGoogle Scholar
  141. 141.
    Chauhan PS, Satti NK, Sharma P, Sharma VK, Suri KA, Bani S (2012) Differential effects of chlorogenic acid on various immunological parameters relevant to rheumatoid arthritis. Phytother Res 26(8):1156–1165CrossRefGoogle Scholar
  142. 142.
    Krakauer T (2002) The polyphenol chlorogenic acid inhibits staphylococcal exotoxin-induced inflammatory cytokines and chemokines. Immunopharmacol Immunotoxicol 24(1):113–119CrossRefGoogle Scholar
  143. 143.
    Yonathan M, Asres K, Assefa A, Bucar F (2006) In vivo anti-inflammatory and anti-nociceptive activities of Cheilanthes farinosa. J Ethnopharmacol 108(3):462–470CrossRefGoogle Scholar
  144. 144.
    Marrassini C, Acevedo C, Miño J, Ferraro G, Gorzalczany S (2010) Evaluation of antinociceptive, antinflammatory activities and phytochemical analysis of aerial parts of Urtica urens L. Phytother Res 24(12):1807–1812CrossRefGoogle Scholar
  145. 145.
    Gorzalczany S, Marrassini C, Miño J, Acevedo C, Ferraro G (2011) Antinociceptive activity of ethanolic extract and isolated compounds of Urtica circularis. J Ethnopharmacol 134(3):733–738CrossRefGoogle Scholar
  146. 146.
    Bagdas D, Cinkilic N, Ozboluk HY, Ozyigit MO, Gurun MS (2013) Antihyperalgesic activity of chlorogenic acid in experimental neuropathic pain. J Nat Med 67(4):698–704CrossRefGoogle Scholar
  147. 147.
    Hara K, Haranishi Y, Kataoka K, Takahashi Y, Terada T, Nakamura M, Sata T (2013) Chlorogenic acid administered intrathecally alleviates mechanical and cold hyperalgesia in a rat neuropathic pain model. Eur J Pharmacol. doi: 10.1016/j.ejphar.2013.10.046 Google Scholar
  148. 148.
    Qu Z-W, Liu T-T, Qiu C-Y, Li J-D, Hu W-P (2014) Inhibition of acid-sensing ion channels by chlorogenic acid in rat dorsal root ganglion neurons. Neurosci Lett 567:35–39CrossRefGoogle Scholar
  149. 149.
    Honjo S, Kono S, Coleman MP, Shinchi K, Sakurai Y, Todoroki I, Umeda T, Wakabayashi K, Imanishi K, Nishikawa H (2001) Coffee consumption and serum aminotransferases in middle-aged Japanese men. J Clin Epidemiol 54(8):823–829CrossRefGoogle Scholar
  150. 150.
    La Vecchia C (2005) Coffee, liver enzymes, cirrhosis and liver cancer. J Hepatol 42(4):444–446CrossRefGoogle Scholar
  151. 151.
    Basnet P, Matsushige K, Hase K, Kadota S, Namba T (1996) Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models. Biol Pharm Bull 19 (11):1479–1484CrossRefGoogle Scholar
  152. 152.
    Wang G-F, Shi L-P, Ren Y-D, Liu Q-F, Liu H-F, Zhang R-J, Li Z, Zhu F-H, He P-L, Tang W (2009) Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res 83(2):186–190CrossRefGoogle Scholar
  153. 153.
    MATSUI Y, SHIBATA H (1998) Iron chelation by chlorogenic acid as a natural antioxidant. Biosci Biotechnol Biochem 62(1):22–27CrossRefGoogle Scholar
  154. 154.
    Kapil A, Koul I, Suri O (1995) Antihepatotoxic effects of chlorogenic acid from Anthocephalus cadamba. Phytother Res 9(3):189–193CrossRefGoogle Scholar
  155. 155.
    Xu Y, Chen J, Yu X, Tao W, Jiang F, Yin Z, Liu C (2010) Protective effects of chlorogenic acid on acute hepatotoxicity induced by lipopolysaccharide in mice. Inflamm Res 59(10):871–877CrossRefGoogle Scholar
  156. 156.
    Xu D, Hu L, Xia X, Song J, Li L, Song E, Song Y (2014) Tetrachlorobenzoquinone induces acute liver injury, up-regulates HO-1 and NQO1 expression in mice model: the protective role of chlorogenic acid. Environ Toxicol Pharmacol 37(3):1212–1220CrossRefGoogle Scholar
  157. 157.
    Koriem KM, Soliman RE (2014) Chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine. J Toxicol. doi: 10.1155/2014/583494 Google Scholar
  158. 158.
    Akashi I, Kagami K, Hirano T, Oka K (2009) Protective effects of coffee-derived compounds on lipopolysaccharide/d-galactosamine induced acute liver injury in rats. J Pharm Pharmacol 61(4):473–478CrossRefGoogle Scholar
  159. 159.
    Yun N, Kang J-W, Lee S-M (2012) Protective effects of chlorogenic acid against ischemia/reperfusion injury in rat liver: molecular evidence of its antioxidant and anti-inflammatory properties. J Nutr Biochem 23(10):1249–1255CrossRefGoogle Scholar
  160. 160.
    Shi H, Dong L, Bai Y, Zhao J, Zhang Y, Zhang L (2009) Chlorogenic acid against carbon tetrachloride-induced liver fibrosis in rats. Eur J Pharmacol 623(1):119–124CrossRefGoogle Scholar
  161. 161.
    Di Paola R, Esposito E, Mazzon E, Caminiti R, Toso RD, Pressi G, Cozzocrea S (2010) 3, 5-Dicaffeoyl-4-malonylquinic acid reduced oxidative stress and inflammation in a experimental model of inflammatory bowel disease. Free Radic Res 44(1):74–89CrossRefGoogle Scholar
  162. 162.
    Shin HS, Satsu H, Bae MJ, Zhao Z, Ogiwara H, Totsuka M, Shimizu M (2015) Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem 168:167–175. doi: 10.1016/j.foodchem.2014.06.100 CrossRefGoogle Scholar
  163. 163.
    Ruan Z, Liu S, Zhou Y, Mi S, Liu G, Wu X, Yao K, Assaad H, Deng Z, Hou Y (2014) Chlorogenic acid decreases intestinal permeability and increases expression of intestinal tight junction proteins in weaned rats challenged with LPS.Google Scholar
  164. 164.
    George SE, Ramalakshmi K, Mohan Rao LJ (2008) A perception on health benefits of coffee. Crit Rev Food Sci Nutr 48(5):464–486CrossRefGoogle Scholar
  165. 165.
    Kim C, Yu HG, Sohn J (2010) The anti-angiogenic effect of chlorogenic acid on choroidal neovascularization. Korean J Ophthalmol 24(3):163–168CrossRefGoogle Scholar
  166. 166.
    Salazar-Martinez E, Willett WC, Ascherio A, Manson JE, Leitzmann MF, Stampfer MJ, Hu FB (2004) Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med 140(1):1–8CrossRefGoogle Scholar
  167. 167.
    SOTILLO DR, Hadley M, WOLF-HALL C (1998) Potato peel extract a nonmutagenic antioxidant with potential antimicrobial activity. Journal of food science 63(5):907–910CrossRefGoogle Scholar
  168. 168.
    Ristow M (2014) Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med 20(7):709–711CrossRefGoogle Scholar
  169. 169.
    Surh Y-J, Kundu JK, Na H-K, Lee J-S (2005) Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135(12):2993 S–3001 SGoogle Scholar
  170. 170.
    Thomson AW, Lotze MT (2003) The Cytokine Handbook, Two-Volume Set. Gulf Professional Publishing, USAGoogle Scholar
  171. 171.
    Gebhardt R (1998) Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J Pharmacol Exp Ther 286(3):1122–1128Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Internal Medicine VI: Psychosomatic Medicine and PsychotherapyUniversity Hospital TuebingenTuebingenGermany
  2. 2.Faculty of Physical Education and Sport SciencesInternational Branch of Ferdowsi University of MashhadMashhadIran

Personalised recommendations