Fish oil supplementation attenuates neuroinflammation and alleviates depressive-like behavior in rats submitted to repeated lipopolysaccharide



Depression is frequently associated with inflammation, whereas omega-3 polyunsaturated fatty acids (PUFAs) primarily found in fish oil possess anti-inflammatory properties. Although converging studies suggest an antidepressant effect of PUFAs, there is limited evidence directly linking the neuro-immune modulating features of PUFAs to the antidepressant actions.


Therefore, we assessed the effects of fish oil (FO) supplementation on behavioral changes, inflammatory cytokine expression and oxidative reactions in frontal cortex and hippocampus of rats following repeated peripheral immune challenge by lipopolysaccharide (LPS) for 2 weeks (500 μg/kg every other day).


Repeated LPS administration induced the rats to a depressive-like state and increased mRNA expression of pro-inflammatory cytokines, including 1L-1β, 1L-6 and TNF-α, in frontal cortex and hippocampus. FO supplementation attenuated the LPS-induced abnormal behavior and brain inflammatory response. Concurrent with the antidepressant action, FO also reduced LPS-induced oxidative reactions and neural apoptosis in the rat brain, as evidenced by decreased malondialdehyde (MDA) production, increased catalase activities and inhibited pro-apoptotic protein Bax mRNA expression. In addition, FO inhibited activation of NF-κB and iNOS induced by LPS. Interestingly, we found FO suppressed the activation of the inflammasome NLRP3 and ionotropic purinergic receptor P2X7R evoked by LPS, suggesting a potential anti-inflammatory mechanism for PUFAs. Besides, FO also restored the LPS-induced neurochemical disturbance, especially the balance between serotonin and kynurenine branches of tryptophan metabolism, which is tightly associated with depression.


These findings provide novel insights into the antidepressant action of PUFAs and further strengthen the link between inflammation and depression.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Liu Y, Ho RC, Mak A (2012) Interleukin (IL)-6, tumour necrosis factor alpha (TNF-alpha) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord 139(3):230–239. doi:10.1016/j.jad.2011.08.003

  2. 2.

    Rush G, O’Donovan A, Nagle L, Conway C, McCrohan A, O’Farrelly C, Lucey JV, Malone KM (2016) Alteration of immune markers in a group of melancholic depressed patients and their response to electroconvulsive therapy. J Affect Disord 205:60–68. doi:10.1016/j.jad.2016.06.035

  3. 3.

    Matcham F, Rayner L, Steer S, Hotopf M (2013) The prevalence of depression in rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology 52(12):2136–2148. doi:10.1093/rheumatology/ket169

  4. 4.

    Nikkheslat N, Zunszain PA, Horowitz MA, Barbosa IG, Parker JA, Myint AM, Schwarz MJ, Tylee AT, Carvalho LA, Pariante CM (2015) Insufficient glucocorticoid signaling and elevated inflammation in coronary heart disease patients with comorbid depression. Brain Behav Immun 48:8–18. doi:10.1016/j.bbi.2015.02.002

  5. 5.

    Stuart MJ, Baune BT (2012) Depression and type 2 diabetes: inflammatory mechanisms of a psychoneuroendocrine co-morbidity. Neurosci Biobehav Rev 36(1):658–676. doi:10.1016/j.neubiorev.2011.10.001

  6. 6.

    Capuron L, Ravaud A, Miller AH, Dantzer R (2004) Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2 and/or interferon-alpha cancer therapy. Brain Behav Immun 18(3):205–213. doi:10.1016/j.bbi.2003.11.004

  7. 7.

    Adzic M, Djordjevic J, Mitic M, Brkic Z, Lukic I, Radojcic M (2015) The contribution of hypothalamic neuroendocrine, neuroplastic and neuroinflammatory processes to lipopolysaccharide-induced depressive-like behaviour in female and male rats: Involvement of glucocorticoid receptor and C/EBP-beta. Behav Brain Res 291:130–139. doi:10.1016/j.bbr.2015.05.029

  8. 8.

    Su KP, Wang SM, Pae CU (2013) Omega-3 polyunsaturated fatty acids for major depressive disorder. Expert Opin Investig Drugs 22(12):1519–1534. doi:10.1517/13543784.2013.836487

  9. 9.

    Chang CY, Kuan YH, Li JR, Chen WY, Ou YC, Pan HC, Liao SL, Raung SL, Chang CJ, Chen CJ (2013) Docosahexaenoic acid reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. J Nutr Biochem 24(12):2127–2137. doi:10.1016/j.jnutbio.2013.08.004

  10. 10.

    Casali BT, Corona AW, Mariani MM, Karlo JC, Ghosal K, Landreth GE (2015) Omega-3 fatty acids augment the actions of nuclear receptor agonists in a mouse model of Alzheimer’s disease. J Neurosci 35(24):9173–9181. doi:10.1523/JNEUROSCI.1000-15.2015

  11. 11.

    Luchtman DW, Meng Q, Song C (2012) Ethyl-eicosapentaenoate (E-EPA) attenuates motor impairments and inflammation in the MPTP-probenecid mouse model of Parkinson’s disease. Behav Brain Res 226(2):386–396. doi:10.1016/j.bbr.2011.09.033

  12. 12.

    Li K, Huang T, Zheng J, Wu K, Li D (2014) Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor alpha: a meta-analysis. PloS one 9(2):e88103. doi:10.1371/journal.pone.0088103

  13. 13.

    Grosso G, Micek A, Marventano S, Castellano S, Mistretta A, Pajak A, Galvano F (2016) Dietary n-3 PUFA, fish consumption and depression: A systematic review and meta-analysis of observational studies. J Affect Disord 205:269–281. doi:10.1016/j.jad.2016.08.011

  14. 14.

    Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C, Drago F, Caraci F (2014) Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PloS One 9(5):e96905. doi:10.1371/journal.pone.0096905

  15. 15.

    Shinto L, Marracci G, Mohr DC, Bumgarner L, Murchison C, Senders A, Bourdette D (2016) Omega-3 fatty acids for depression in multiple sclerosis: a randomized pilot study. PloS One 11(1):e0147195. doi:10.1371/journal.pone.0147195

  16. 16.

    Hennebelle M, Balasse L, Latour A, Champeil-Potokar G, Denis S, Lavialle M, Gisquet-Verrier P, Denis I, Vancassel S (2012) Influence of omega-3 fatty acid status on the way rats adapt to chronic restraint stress. PloS One 7(7):e42142. doi:10.1371/journal.pone.0042142

  17. 17.

    Song C, Leonard BE, Horrobin DF (2004) Dietary ethyl-eicosapentaenoic acid but not soybean oil reverses central interleukin-1-induced changes in behavior, corticosterone and immune response in rats. Stress 7(1):43–54. doi:10.1080/10253890410001667188

  18. 18.

    Skaper SD, Debetto P, Giusti P (2010) The P2 × 7 purinergic receptor: from physiology to neurological disorders. FASEB J 24 (2):337–345. doi:10.1096/fj.09-138883

  19. 19.

    Iwata M, Ota KT, Li XY, Sakaue F, Li N, Dutheil S, Banasr M, Duric V, Yamanashi T, Kaneko K, Rasmussen K, Glasebrook A, Koester A, Song D, Jones KA, Zorn S, Smagin G, Duman RS (2016) Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2 × 7 receptor. Biol Psychiatry 80(1):12–22. doi:10.1016/j.biopsych.2015.11.026

  20. 20.

    Halmai Z, Dome P, Vereczkei A, Abdul-Rahman O, Szekely A, Gonda X, Faludi G, Sasvari-Szekely M, Nemoda Z (2013) Associations between depression severity and purinergic receptor P2RX7 gene polymorphisms. J Affect Disord 150(1):104–109. doi:10.1016/j.jad.2013.02.033

  21. 21.

    Basso AM, Bratcher NA, Harris RR, Jarvis MF, Decker MW, Rueter LE (2009) Behavioral profile of P2 × 7 receptor knockout mice in animal models of depression and anxiety: relevance for neuropsychiatric disorders. Behav Brain Res 198(1):83–90. doi:10.1016/j.bbr.2008.10.018

  22. 22.

    Zhang Y, Liu L, Liu YZ, Shen XL, Wu TY, Zhang T, Wang W, Wang YX, Jiang CL (2015) NLRP3 inflammasome mediates chronic Mild stress-induced depression in mice via neuroinflammation. Int J Neuropsychopharmacol 18 (8). doi:10.1093/ijnp/pyv006

  23. 23.

    Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O’Neil A, Hayley AC, Pasco JA, Anderson G, Jacka FN, Maes M (2014) Oxidative and nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev 45:46–62. doi:10.1016/j.neubiorev.2014.05.007

  24. 24.

    Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36(2):764–785. doi:10.1016/j.neubiorev.2011.12.005

  25. 25.

    Savitz J (2016) Role of kynurenine metabolism pathway activation in major depressive disorders. Curr Top Behav Neurosci. doi:10.1007/7854_2016_12

  26. 26.

    Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R (2011) The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Progress Neuropsychopharmacol Biol Psychiatry 35 (3):702–721. doi:10.1016/j.pnpbp.2010.12.017

  27. 27.

    Sperner-Unterweger B, Kohl C, Fuchs D (2014) Immune changes and neurotransmitters: possible interactions in depression? Progress Neuropsychopharmacol Biol Psychiatry 48:268–276. doi:10.1016/j.pnpbp.2012.10.006

  28. 28.

    Lamaziere A, Richard D, Barbe U, Kefi K, Bausero P, Wolf C, Visioli F (2011) Differential distribution of DHA-phospholipids in rat brain after feeding: a lipidomic approach. Prostaglandins Leukot Essent Fatty Acids 84:7–11. doi:10.1016/j.plefa.2010.11.001

  29. 29.

    Wu YQ, Dang RL, Tang MM, Cai HL, Li HD, Liao DH, He X, Cao LJ, Xue Y, Jiang P (2016) Long chain omega-3 polyunsaturated fatty acid supplementation alleviates doxorubicin-induced depressive-like behaviors and neurotoxicity in rats: involvement of oxidative stress and neuroinflammation. Nutrients 8(4):243. doi:10.3390/nu8040243

  30. 30.

    Jiang P, Zhang LH, Cai HL, Li HD, Liu YP, Tang MM, Dang RL, Zhu WY, Xue Y, He X (2014) Neurochemical effects of chronic administration of calcitriol in rats. Nutrients 6(12):6048–6059. doi:10.3390/nu6126048

  31. 31.

    Zhang L-H, Cai H-L, Jiang P, Li H-D, Cao L-J, Dang R-L, Zhu W-Y, Deng Y (2015) Simultaneous determination of multiple neurotransmitters and their metabolites in rat brain homogenates and microdialysates by LC-MS/MS. Analyt Methods 7(9):3929–3938. doi:10.1039/C5AY00308C

  32. 32.

    Elgarf AS, Aboul-Fotouh S, Abd-Alkhalek HA, El Tabbal M, Hassan AN, Kassim SK, Hammouda GA, Farrag KA, Abdel-tawab AM (2014) Lipopolysaccharide repeated challenge followed by chronic mild stress protocol introduces a combined model of depression in rats: reversibility by imipramine and pentoxifylline. Pharmacol Biochem Behav 126:152–162. doi:10.1016/j.pbb.2014.09.014

  33. 33.

    Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41(2–3):242–247. doi:10.1007/s12035-010-8105-9

  34. 34.

    Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO (2016) Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS Neurosci Ther. doi:10.1111/cns.12588

  35. 35.

    Kerr DM, Harhen B, Okine BN, Egan LJ, Finn DP, Roche M (2013) The monoacylglycerol lipase inhibitor JZL184 attenuates LPS-induced increases in cytokine expression in the rat frontal cortex and plasma: differential mechanisms of action. Br J Pharmacol 169(4):808–819. doi:10.1111/j.1476-5381.2012.02237.x

  36. 36.

    Souza KL, Gurgul-Convey E, Elsner M, Lenzen S (2008) Interaction between pro-inflammatory and anti-inflammatory cytokines in insulin-producing cells. J Endocrinol 197(1):139–150. doi:10.1677/JOE-07-0638

  37. 37.

    Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS (2010) Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci USA 107(6):2669–2674. doi:10.1073/pnas.0910658107

  38. 38.

    Mutlu O, Ulak G, Laugeray A, Belzung C (2009) Effects of neuronal and inducible NOS inhibitor 1-[2-(trifluoromethyl) phenyl] imidazole (TRIM) in unpredictable chronic mild stress procedure in mice. Pharmacol Biochem Behav 92 (1):82–87. doi:10.1016/j.pbb.2008.10.013

  39. 39.

    Choi HB, Ryu JK, Kim SU, McLarnon JG (2007) Modulation of the purinergic P2 × 7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. J Neurosci 27(18):4957–4968. doi:10.1523/JNEUROSCI.5417-06.2007

  40. 40.

    Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741. doi:10.1016/j.biopsych.2008.11.029

  41. 41.

    Hunter RL, Dragicevic N, Seifert K, Choi DY, Liu M, Kim HC, Cass WA, Sullivan PG, Bing G (2007) Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 100(5):1375–1386. doi:10.1111/j.1471-4159.2006.04327.x

  42. 42.

    Delattre AM, Carabelli B, Mori MA, Kempe PG, Rizzo de Souza LE, Zanata SM, Machado RB, Suchecki D, Andrade da Costa BL, Lima MM, Ferraz AC (2016) Maternal omega-3 supplement improves dopaminergic system in pre- and postnatal inflammation-induced neurotoxicity in Parkinson’s disease model. Mol Neurobiol. doi:10.1007/s12035-016-9803-8

  43. 43.

    Shin SS, Dixon CE (2011) Oral fish oil restores striatal dopamine release after traumatic brain injury. Neurosci Lett 496(3):168–171. doi:10.1016/j.neulet.2011.04.009

  44. 44.

    O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14(5):511–522. doi:10.1038/

  45. 45.

    Miura H, Ozaki N, Sawada M, Isobe K, Ohta T, Nagatsu T (2008) A link between stress and depression: shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress 11(3):198–209. doi:10.1080/10253890701754068

  46. 46.

    Walker AK, Budac DP, Bisulco S, Lee AW, Smith RA, Beenders B, Kelley KW, Dantzer R (2013) NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology 38(9):1609–1616. doi:10.1038/npp.2013.71

Download references


This study was supported by Tianjin Municipal Education Commission (No. 20130601) and National Natural Science Foundation of China (81602846).

Author information

Correspondence to Pei Jiang.

Ethics declarations

Conflict of interest

All authors have no financial disclosures and no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dang, R., Zhou, X., Tang, M. et al. Fish oil supplementation attenuates neuroinflammation and alleviates depressive-like behavior in rats submitted to repeated lipopolysaccharide. Eur J Nutr 57, 893–906 (2018).

Download citation


  • ω-3 Polyunsaturated fatty acids
  • Lipopolysaccharide
  • Neuroinflammation
  • Depression
  • P2X7R
  • Neurotransmitters