European Journal of Nutrition

, Volume 57, Issue 2, pp 795–807 | Cite as

Effects of a diet rich in arabinoxylan and resistant starch compared with a diet rich in refined carbohydrates on postprandial metabolism and features of the metabolic syndrome

  • Anne Grethe Schioldan
  • Søren Gregersen
  • Stine Hald
  • Ann Bjørnshave
  • Mette Bohl
  • Bolette Hartmann
  • Jens Juul Holst
  • Hans Stødkilde-Jørgensen
  • Kjeld Hermansen
Original Contribution



Low intake of dietary fibre is associated with the development of type 2 diabetes. Dyslipidaemia plays a key role in the pathogenesis of type 2 diabetes. Knowledge of the impact of dietary fibres on postprandial lipaemia is, however, sparse. This study aimed in subjects with metabolic syndrome to assess the impact on postprandial lipaemia and features of the metabolic syndrome of a healthy carbohydrate diet (HCD) rich in cereal fibre, arabinoxylan and resistant starch compared to a refined-carbohydrate western-style diet (WSD).


Nineteen subjects completed the randomised, crossover study with HCD and WCD for 4-week. Postprandial metabolism was evaluated by a meal-challenge test and insulin sensitivity was assessed by HOMA-IR and Matsuda index. Furthermore, fasting cholesterols, serum-fructosamine, circulating inflammatory markers, ambulatory blood pressure and intrahepatic lipid content were measured.


We found no diet effects on postprandial lipaemia. However, there was a significant diet × statin interaction on total cholesterol (P = 0.02) and LDL cholesterol (P = 0.002). HCD decreased total cholesterol (−0.72 mmol/l, 95% CI (−1.29; −0.14) P = 0.03) and LDL cholesterol (−0.61 mmol/l, 95% CI (−0.86; −0.36) P = 0.002) compared with WSD in subjects on but not without statin treatment. We detected no other significant diet effects.


In subjects with metabolic syndrome on statins a 4-week diet rich in arabinoxylan and resistant starch improved fasting LDL and total cholesterol compared to subjects not being on statins. However, we observed no diet related impact on postprandial lipaemia or features of the metabolic syndrome. The dietary fibre x statin interaction deserves further elucidation.


Metabolic syndrome Dietary fibre Lipaemia Insulin resistance 



We thank Eva Molgaard Jensen, Lene Trudso and Tove Skrumsager for technical assistance and Kia Valum Rasmussen for dietetic assistance. Also, we thank professor Knud Erik Bach Knudsen and senior researcher Helle Nygaard Laerke from the Department of Animal Science at Aarhus University for carrying out the chemical analyses of the key foods. Associate professor Bo Martin Bibby and statistician Simon Bang Kristensen from the Department of Biostatistics at Aarhus University were consulted for statistical advice. The study was funded by The Danish Council for Strategic Research (DSF 10-093526). The following companies provided food items for the study participants: Lantmännen R&D; Ingredion Incorporated Inc.; DuPont Nutrition and Biosciences ApS; KMC AmbA; Lantmännen Cerealia A/S and Lantmännen Schulstad A/S.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr, International Diabetes Federation Task Force on Epidemiology and Prevention, Hational Heart, Lung, and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645CrossRefGoogle Scholar
  2. 2.
    International Diabetes Federation (2013) IDF Diabetes Atlas, 6th edn. International Diabetes Federation, Brussels. Accessed 7 Jan 2017
  3. 3.
    Heidemann C, Schulze MB, Franco OH, van Dam RM, Mantzoros CS, Hu FB (2008) Dietary patterns and risk of mortality from cardiovascular disease, cancer, and all causes in a prospective cohort of women. Circulation 118:230–237CrossRefGoogle Scholar
  4. 4.
    Maki KC, Phillips AK (2015) Dietary substitutions for refined carbohydrate that show promise for reducing risk of type 2 diabetes in men and women. J Nutr 145:159 S–163 SCrossRefGoogle Scholar
  5. 5.
    Yao B, Fang H, Xu W, Yan Y, Xu H, Liu Y, Mo M, Zhang H, Zhao Y (2014) Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol 29:79–88CrossRefGoogle Scholar
  6. 6.
    Threapleton DE, Greenwood DC, Evans CE, Cleghorn CL, Nykjaer C, Woodhead C, Cade JE, Gale CP, Burley VJ (2013) Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 347:f6879CrossRefGoogle Scholar
  7. 7.
    Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298:299–308CrossRefGoogle Scholar
  8. 8.
    Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM (2007) Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298:309–316CrossRefGoogle Scholar
  9. 9.
    Mekki N, Christofilis MA, Charbonnier M, Atlan-Gepner C, Defoort C, Juhel C, Borel P, Portugal H, Pauli AM, Vialettes B, Lairon D (1999) Influence of obesity and body fat distribution on postprandial lipemia and triglyceride-rich lipoproteins in adult women. J Clin Endocrinol Metab 84:184–191Google Scholar
  10. 10.
    Hermansen K, Baekdal TA, During M, Pietraszek A, Mortensen LS, Jorgensen H, Flint A (2013) Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial. Diabetes Obes Metab 15:1040–1048CrossRefGoogle Scholar
  11. 11.
    Hein GJ, Baker C, Hsieh J, Farr S, Adeli K (2013) GLP-1 and GLP-2 as yin and yang of intestinal lipoprotein production: evidence for predominance of GLP-2-stimulated postprandial lipemia in normal and insulin-resistant states. Diabetes 62:373–381CrossRefGoogle Scholar
  12. 12.
    Dash S, Xiao C, Morgantini C, Connelly PW, Patterson BW, Lewis GF (2014) Glucagon-like Peptide-2 regulates release of chylomicrons from the intestine. Gastroenterology 147:1275–1284CrossRefGoogle Scholar
  13. 13.
    Orskov C, Holst JJ, Knuhtsen S, Baldissera FG, Poulsen SS, Nielsen OV (1986) Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119:1467–1475CrossRefGoogle Scholar
  14. 14.
    Hartmann B, Johnsen AH, Orskov C, Adelhorst K, Thim L, Holst JJ (2000) Structure, measurement, and secretion of human glucagon-like peptide-2. Peptides 21:73–80CrossRefGoogle Scholar
  15. 15.
    Lund MT, Dalby S, Hartmann B, Helge J, Holst JJ, Dela F (2014) The incretin effect does not differ in trained and untrained, young, healthy men. Acta Physiol (Oxf) 210:565–572CrossRefGoogle Scholar
  16. 16.
    Berglund L, Brunzell JD, Goldberg AC, Goldberg IJ, Sacks F, Murad MH, Stalenhoef AF, Endocrine society (2012) Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 97:2969–2989CrossRefGoogle Scholar
  17. 17.
    Zhou J, Martin RJ, Tulley RT, Raggio AM, McCutcheon KL, Shen L, Danna SC, Tripathy S, Hegsted M, Keenan MJ (2008) Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab. doi: 10.1152/ajpendo.90637.2008 Google Scholar
  18. 18.
    Shen L, Keenan MJ, Raggio A, Williams C, Martin RJ (2011) Dietary-resistant starch improves maternal glycemic control in Goto?Kakizaki rat. Mol Nutr Food Res 55:1499–1508CrossRefGoogle Scholar
  19. 19.
    Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61:364–371CrossRefGoogle Scholar
  20. 20.
    Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17:1519–1528CrossRefGoogle Scholar
  21. 21.
    Nielsen TS, Laerke HN, Theil PK, Sorensen JF, Saarinen M, Forssten S, Bach Knudsen KE (2014) Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs. Br J Nutr 112:1837–1849. doi: 10.1017/S000711451400302X CrossRefGoogle Scholar
  22. 22.
    Hald S, Schioldan AG, Moore ME, Dige A, Laerke HN, Agnholt J, Bach Knudsen KE, Hermansen K, Marco ML, Gregersen S, Dahlerup JF (2016) Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: a randomised crossover study. PLoS One 11:e0159223CrossRefGoogle Scholar
  23. 23.
    Alberti KG, Zimmet P, Shaw J (2006) Metabolic syndrome–a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 23:469–480CrossRefGoogle Scholar
  24. 24.
    Bohl M, Bjornshave A, Rasmussen KV, Schioldan AG, Amer B, Larsen MK, Dalsgaard TK, Holst JJ, Herrmann A, O’Neill S, O’Driscoll L, Afman L, Jensen E, Christensen MM, Gregersen S, Hermansen K (2015) Dairy proteins, dairy lipids, and postprandial lipemia in persons with abdominal obesity (DairyHealth): a 12-week, randomized, parallel-controlled, double-blinded, diet intervention study. Am J Clin Nutr 101:870–878CrossRefGoogle Scholar
  25. 25.
    Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst JJ (1994) Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes 43:535–539CrossRefGoogle Scholar
  26. 26.
    Brader L, Uusitupa M, Dragsted LO, Hermansen K (2014) Effects of an isocaloric healthy Nordic diet on ambulatory blood pressure in metabolic syndrome: a randomized SYSDIET sub-study. Eur J Clin Nutr 68:57–63CrossRefGoogle Scholar
  27. 27.
    Moller L, Stodkilde-Jorgensen H, Jensen FT, Jorgensen JO (2008) Fasting in healthy subjects is associated with intrahepatic accumulation of lipids as assessed by 1H-magnetic resonance spectroscopy. Clin Sci (Lond) 114:547–552CrossRefGoogle Scholar
  28. 28.
    Pietraszek A, Gregersen S, Pedersen SB, Holst JJ, Hermansen K (2014) Acute effects of monounsaturated fat on postprandial lipemia and gene expression in first-degree relatives of subjects with type 2 diabetes. Eur J Clin Nutr 68:1022–1028CrossRefGoogle Scholar
  29. 29.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408CrossRefGoogle Scholar
  30. 30.
    Holmer-Jensen J, Mortensen LS, Astrup A, de Vrese M, Holst JJ, Thomsen C, Hermansen K (2013) Acute differential effects of dietary protein quality on postprandial lipemia in obese non-diabetic subjects. Nutr Res 33:34–40CrossRefGoogle Scholar
  31. 31.
    Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, Hobbs HH, Dobbins RL (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288:E462–E468CrossRefGoogle Scholar
  32. 32.
    Giacco R, Costabile G, Della Pepa G, Anniballi G, Griffo E, Mangione A, Cipriano P, Viscovo D, Clemente G, Landberg R, Pacini G, Rivellese AA, Riccardi G (2014) A whole-grain cereal-based diet lowers postprandial plasma insulin and triglyceride levels in individuals with metabolic syndrome. Nutr Metab Cardiovasc Dis 24:837–844CrossRefGoogle Scholar
  33. 33.
    Garcia AL, Otto B, Reich SC, Weickert MO, Steiniger J, Machowetz A, Rudovich NN, Mohlig M, Katz N, Speth M, Meuser F, Doerfer J, Zunft HJ, Pfeiffer AH, Koebnick C (2007) Arabinoxylan consumption decreases postprandial serum glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose tolerance. Eur J Clin Nutr 61:334–341CrossRefGoogle Scholar
  34. 34.
    Robertson MD, Wright JW, Loizon E, Debard C, Vidal H, Shojaee-Moradie F, Russell-Jones D, Umpleby AM (2012) Insulin-sensitizing effects on muscle and adipose tissue after dietary fiber intake in men and women with metabolic syndrome. J Clin Endocrinol Metab 97:3326–3332CrossRefGoogle Scholar
  35. 35.
    Bodinham CL, Smith L, Thomas EL, Bell JD, Swann JR, Costabile A, Russell-Jones D, Umpleby AM, Robertson MD (2014) Efficacy of increased resistant starch consumption in human type 2 diabetes. Endocr Connect 3:75–84CrossRefGoogle Scholar
  36. 36.
    Robertson MD, Bickerton AS, Dennis AL, Vidal H, Frayn KN (2005) Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr 82:559–567CrossRefGoogle Scholar
  37. 37.
    Giacco R, Clemente G, Cipriano D, Luongo D, Viscovo D, Patti L, Di Marino L, Giacco A, Naviglio D, Bianchi MA, Ciati R, Brighenti F, Rivellese AA, Riccardi G (2010) Effects of the regular consumption of wholemeal wheat foods on cardiovascular risk factors in healthy people. Nutr Metab Cardiovasc Dis 20:186–194CrossRefGoogle Scholar
  38. 38.
    Leinonen KS, Poutanen KS, Mykkanen HM (2000) Rye bread decreases serum total and LDL cholesterol in men with moderately elevated serum cholesterol. J Nutr 130:164–170CrossRefGoogle Scholar
  39. 39.
    Lundin EA, Zhang JX, Lairon D, Tidehag P, Aman P, Adlercreutz H, Hallmans G (2004) Effects of meal frequency and high-fibre rye-bread diet on glucose and lipid metabolism and ileal excretion of energy and sterols in ileostomy subjects. Eur J Clin Nutr 58:1410–1419CrossRefGoogle Scholar
  40. 40.
    Hiramitsu S, Ishiguro Y, Matsuyama H, Yamada K, Kato K, Noba M, Uemura A, Yoshida S, Matsubara Y, Kani A, Hasegawa K, Hishida H, Ozaki Y (2010) The effects of ezetimibe on surrogate markers of cholesterol absorption and synthesis in Japanese patients with dyslipidemia. J Atheroscler Thromb 17:106–114CrossRefGoogle Scholar
  41. 41.
    Johnston KL, Thomas EL, Bell JD, Frost GS, Robertson MD (2010) Resistant starch improves insulin sensitivity in metabolic syndrome. Diabet Med 27:391–397CrossRefGoogle Scholar
  42. 42.
    Bodinham CL, Smith L, Wright J, Frost GS, Robertson MD (2012) Dietary fibre improves first-phase insulin secretion in overweight individuals. PLoS One 7:e40834CrossRefGoogle Scholar
  43. 43.
    Maki KC, Pelkman CL, Finocchiaro ET, Kelley KM, Lawless AL, Schild AL, Rains TM (2012) Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J Nutr 142:717–723. doi: 10.3945/jn.111.152975 CrossRefGoogle Scholar
  44. 44.
    Johansson-Persson A, Ulmius M, Cloetens L, Karhu T, Herzig KH, Onning G (2014) A high intake of dietary fiber influences C-reactive protein and fibrinogen, but not glucose and lipid metabolism, in mildly hypercholesterolemic subjects. Eur J Nutr 53:39–48CrossRefGoogle Scholar
  45. 45.
    Andersson A, Tengblad S, Karlstrom B, Kamal-Eldin A, Landberg R, Basu S, Aman P, Vessby B (2007) Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects. J Nutr 137:1401–1407CrossRefGoogle Scholar
  46. 46.
    Giacco R, Lappi J, Costabile G, Kolehmainen M, Schwab U, Landberg R, Uusitupa M, Poutanen K, Pacini G, Rivellese AA, Riccardi G, Mykkanen H (2013) Effects of rye and whole wheat versus refined cereal foods on metabolic risk factors: a randomised controlled two-centre intervention study. Clin Nutr 32:941–949CrossRefGoogle Scholar
  47. 47.
    Pereira MA, Jacobs DR Jr, Pins JJ, Raatz SK, Gross MD, Slavin JL, Seaquist ER (2002) Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. Am J Clin Nutr 75:848–855CrossRefGoogle Scholar
  48. 48.
    Kuijsten A, Aune D, Schulze MB, Norat T, van Woudenbergh GJ, Beulens JW, Sluijs I, Spijkerman AM, van der A DL, Palli D, Kühn T, Wendt A, Buijsse B, Boeing H, Pala V, Amiano P, Buckland G, Huerta JM, Tjøonneland A, Kyrø C, Redondo ML, Sacerdote C, Sánchez MJ, Fagherazzi G, Balkau B, Lajous M, Panico S, Franks PW, Rolandsson O, Nilsson P, Orho-Melander M, Overvad K, Huybrechts I, Slimani N, Tumino R, Barricarte A, Key TJ, Feskens EJ, Langenberg C, Sharp S, Foroughi NG, Riboli E, Wareham NJ (2015) Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia 58:1394–1408CrossRefGoogle Scholar
  49. 49.
    Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H (2007) Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med 167:956–965CrossRefGoogle Scholar
  50. 50.
    Juntunen KS, Niskanen LK, Liukkonen KH, Poutanen KS, Holst JJ, Mykkanen HM (2002) Postprandial glucose, insulin, and incretin responses to grain products in healthy subjects. Am J Clin Nutr 75:254–262CrossRefGoogle Scholar
  51. 51.
    Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470CrossRefGoogle Scholar
  52. 52.
    Lu ZX, Walker KZ, Muir JG, O’Dea K (2004) Arabinoxylan fibre improves metabolic control in people with type II diabetes. Eur J Clin Nutr 58:621–628CrossRefGoogle Scholar
  53. 53.
    Behall KM, Hallfrisch J (2002) Plasma glucose and insulin reduction after consumption of breads varying in amylose content. Eur J Clin Nutr 56:913–920CrossRefGoogle Scholar
  54. 54.
    Hoebler C, Karinthi A, Chiron H, Champ M, Barry JL (1999) Bioavailability of starch in bread rich in amylose: metabolic responses in healthy subjects and starch structure. Eur J Clin Nutr 53:360–366CrossRefGoogle Scholar
  55. 55.
    Freeland KR, Wilson C, Wolever TM (2010) Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br J Nutr 103:82–90CrossRefGoogle Scholar
  56. 56.
    Hartmann B, Harr MB, Jeppesen PB, Wojdemann M, Deacon CF, Mortensen PB, Holst JJ (2000) In vivo and in vitro degradation of glucagon-like peptide-2 in humans. J Clin Endocrinol Metab 85:2884–2888Google Scholar
  57. 57.
    Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ (1995) Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 44:1126–1131CrossRefGoogle Scholar
  58. 58.
    Eliasson B, Moller-Goede D, Eeg-Olofsson K, Wilson C, Cederholm J, Fleck P, Diamant M, Taskinen MR, Smith U (2012) Lowering of postprandial lipids in individuals with type 2 diabetes treated with alogliptin and/or pioglitazone: a randomised double-blind placebo-controlled study. Diabetologia 55:915–925CrossRefGoogle Scholar
  59. 59.
    Yatsuya H, Nihashi T, Li Y, Hotta Y, Matsushita K, Muramatsu T, Otsuka R, Matsunaga M, Yamashita K, Wang C, Uemura M, Harada A, Fukatsu H, Toyoshima H, Aoyama A, Tamakoshi K (2014) Independent association of liver fat accumulation with insulin resistance. Obes Res Clin Pract 8:e350–5CrossRefGoogle Scholar
  60. 60.
    Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, Fagà E, Silli B, Pagano G (2003) Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 37:909–916CrossRefGoogle Scholar
  61. 61.
    Georgoulis M, Kontogianni MD, Tileli N, Margariti A, Fragopoulou E, Tiniakos D, Zafiropoulou R, Papatheodoridis G (2014) The impact of cereal grain consumption on the development and severity of non-alcoholic fatty liver disease. Eur J Nutr 53:1727–1735CrossRefGoogle Scholar
  62. 62.
    Zelber-Sagi S, Nitzan-Kaluski D, Goldsmith R, Webb M, Blendis L, Halpern Z, Oren R (2007) Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): a population based study; 17850914. J Hepatol 47:711–717CrossRefGoogle Scholar
  63. 63.
    Mollard RC, Senechal M, MacIntosh AC, Hay J, Wicklow BA, Wittmeier KD, Sellers EA, Dean HJ, Ryner L, Berard L, McGavock JM (2014) Dietary determinants of hepatic steatosis and visceral adiposity in overweight and obese youth at risk of type 2 diabetes. Am J Clin Nutr 99:804–812CrossRefGoogle Scholar
  64. 64.
    Maersk M, Belza A, Stødkilde-Jørgensen H, Ringgaard S, Chabanova E, Thomsen H, Pedersen SB, Astrup A, Richelsen B (2012) Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. Am J Clin Nutr 95:283–289CrossRefGoogle Scholar
  65. 65.
    Brownlee IA, Moore C, Chatfield M, Richardson DP, Ashby P, Kuznesof SA, Jebb SA, Seal CJ (2010) Markers of cardiovascular risk are not changed by increased whole-grain intake: the WHOLEheart study, a randomised, controlled dietary intervention. Br J Nutr 104:125–134CrossRefGoogle Scholar
  66. 66.
    Buyken AE, Goletzke J, Joslowski G, Felbick A, Cheng G, Herder C, Brand-Miller JC (2014) Association between carbohydrate quality and inflammatory markers: systematic review of observational and interventional studies. Am J Clin Nutr 99:813–833CrossRefGoogle Scholar
  67. 67.
    Pedersen AN, Christensen T, Matthiessen J, Knudsen VK, Rosenlund-Sørensen M, Biltoft-Jensen A, Hinsch H, Ygil KH, Kørup K, Saxholt E, Trolle E, Søndergaard AB, Fagt S (2015) Danskernes kostvaner 2011–2013. Accessed 7 Jan 2017
  68. 68.
    Ampatzoglou A, Atwal KK, Maidens CM, Williams CL, Ross AB, Thielecke F, Jonnalagadda SS, Kennedy OB, Yaqoob P (2015) Increased whole grain consumption does not affect blood biochemistry, body composition, or gut microbiology in healthy, low-habitual whole grain consumers. J Nutr 145:215–221CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Anne Grethe Schioldan
    • 1
  • Søren Gregersen
    • 1
  • Stine Hald
    • 2
  • Ann Bjørnshave
    • 1
    • 3
  • Mette Bohl
    • 1
  • Bolette Hartmann
    • 4
  • Jens Juul Holst
    • 4
  • Hans Stødkilde-Jørgensen
    • 5
  • Kjeld Hermansen
    • 1
  1. 1.Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
  2. 2.Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
  3. 3.Danish Diabetes AcademyUniversity of CopenhagenCopenhagenDenmark
  4. 4.NNF Center for Basic Metabolic Research and Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
  5. 5.MR Research CentreAarhus University HospitalAarhusDenmark

Personalised recommendations