European Journal of Nutrition

, Volume 57, Issue 2, pp 751–760 | Cite as

Determinants of folate and vitamin B12 plasma levels in the French E3N-EPIC cohort

  • Jordi de BatlleEmail author
  • Marco Matejcic
  • Veronique Chajes
  • Hortensia Moreno-Macias
  • Amina Amadou
  • Nadia Slimani
  • David G. Cox
  • Françoise Clavel-Chapelon
  • Guy Fagherazzi
  • Isabelle Romieu
Original Contribution



Impaired B vitamin status has been identified as a risk factor for major chronic diseases. This study aims at examining the determinants of plasma folate and vitamin B12 concentrations, considering lifestyle factors and MTHFR polymorphisms.


A total of 988 women aged 40–65 years from the French E3N cohort were investigated. Intakes of folate and vitamin B12 were assessed using food frequency questionnaires, and plasma concentrations were measured by microbiological assay. Dietary scores were computed to summarize folate and vitamin B12 dietary sources. MTHFR-C677T and MTHFR-A1298C were determined by Kaspar assay. Pearson’s partial correlation coefficients and multivariable linear regression models were used to assess correlations between main determinants and plasma folate and vitamin B12 levels.


The partial correlation coefficient between dietary intakes and plasma folate was 0.19 (p value <0.001) and 0.08 (p value = 0.008) for vitamin B12. Dietary scores were the main determinant of B vitamin plasma concentrations with a percent change per unit increase of 12.64% (p value <0.001) for folate and 7.6% (p value <0.001) for vitamin B12. Homozygous (T/T) or heterozygous (C/T) women for MTHFR-C677T had lower plasma folate concentrations [C/T: −6.48% (p value = 0.038) and T/T: −15.89% (p value <0.001)] compared to women carrying the C/C genotype. Other determinants of B vitamin plasma concentration include: smoking status for folate, and age and hormone replacement therapy for vitamin B12.


We confirmed previous findings on the role of diet as main determinant of folate and vitamin B12 plasma concentrations. However, the impact of genetic polymorphisms and lifestyle factors on plasma B vitamin concentrations should not be neglected.


Folate Vitamin B12 Dietary intake Biomarkers MTHFR polymorphisms 



This work was supported by Fondation de France, World Cancer Research Funds (WCRF), Institut National du Cancer (INCA), and La Ligue Nationale contre le Cancer. Jordi de Batlle acknowledges the support of the European Commission FP7 Marie Curie Actions-People-Cofunding of regional, national and international programs (COFUND). The authors thank Deborah Postoly, laboratory technician, for sample processing and genotyping of study samples.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All participants signed an informed consent prior to their inclusion in the study. The study has been approved by the ethics committees of all participating centers and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Supplementary material

394_2016_1365_MOESM1_ESM.docx (436 kb)
Supplementary material 1 (DOCX 435 kb)


  1. 1.
    Popkin BM, Adair LS, Ng SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70(1):3–21CrossRefGoogle Scholar
  2. 2.
    Mason JB (2003) Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J Nutr 133(3):941s–947sCrossRefGoogle Scholar
  3. 3.
    Mason JB, Choi SW (2000) Folate and carcinogenesis: developing a unifying hypothesis. Adv Enzyme Regul 40:127–141CrossRefGoogle Scholar
  4. 4.
    Szyf M, Pakneshan P, Rabanni SA (2004) DNA methylation and breast cancer. Biochem Pharmacol 68(6):1187–1197CrossRefGoogle Scholar
  5. 5.
    Stover PJ (2004) Physiology of folate and vitamin B12 in health and disease. Nutr Rev 62(suppl 6):3–12CrossRefGoogle Scholar
  6. 6.
    Molloy AM (2004) Folate and homocysteine interrelationships including genetics of the relevant enzymes. Curr Opin Lipidol 15:49–57CrossRefGoogle Scholar
  7. 7.
    ANSES/Ciqual French food composition table version 2012. Accessed Aug 2014
  8. 8.
    Said HM (2011) Intestinal absorption of water-soluble vitamins in health and disease. Biochem J 437(3):357–372CrossRefGoogle Scholar
  9. 9.
    Halsted CH, Villanueva JA, Devlin AM, Chandler CJ (2002) Metabolic interactions of alcohol and folate. J Nutr 132(8):2367s–2372sCrossRefGoogle Scholar
  10. 10.
    Izmirli M (2013) A literature review of MTHFR (C677T and A1298C polymorphisms) and cancer risk. Mol Biol Rep 40(1):625–637CrossRefGoogle Scholar
  11. 11.
    Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuve LP, Rozen R (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113CrossRefGoogle Scholar
  12. 12.
    Thuesen BH, Husemoen LL, Ovesen L, Jørgensen T, Fenger M, Linneberg A (2010) Lifestyle and genetic determinants of folate and vitamin B12 levels in a general adult population. Br J Nutr 103(8):1195–1204Google Scholar
  13. 13.
    Hustad S, Midttun Ø, Schneede J, Vollset SE, Grotmol T, Ueland PM (2007) The methylenetetrahydrofolate reductase 677C-T polymorphism as a modulator of a B vitamin network with major effects on homocysteine metabolism. Am J Hum Genet 80:846–855CrossRefGoogle Scholar
  14. 14.
    Nishio K, Goto Y, Kondo T, Ito S, Ishida Y, Kawai S, Naito M, Wakai K, Hamajima N (2008) Serum folate and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism adjusted for folate intake. J Epidemiol 18:125–131CrossRefGoogle Scholar
  15. 15.
    DeVos L, Chanson A, Liu Z, Ciappio ED, Parnell LD, Mason JB, Tucker KL, Crott JW (2008) Associations between single nucleotide polymorphisms in folate uptake and metabolizing genes with blood folate, homocysteine, and DNA uracil concentrations. Am J Clin Nutr 88:1149–1158CrossRefGoogle Scholar
  16. 16.
    Al-Tahan J, Sola R, Ruiz JR, Breidenassel C, García-Fuentes M, Moreno LA, Castillo M, Pietrzik K, González-Gross M (2008) Methylenetetrahydrofolate reductase 677CT polymorphism and cobalamin, folate, and homocysteine status in Spanish adolescents. Ann Nutr Metab 52:315–321CrossRefGoogle Scholar
  17. 17.
    Ericson UC, Ivarsson MI, Sonestedt E, Gullberg B, Carlson J, Olsson H, Wirfält E (2009) Increased breast cancer risk at high plasma folate concentrations among women with the MTHFR 677T allele. Am J Clin Nutr 90(5):1380–1389CrossRefGoogle Scholar
  18. 18.
    van der Put NM, Gabreëls F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, van den Heuvel LP, Blom HJ (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62(5):1044–1051CrossRefGoogle Scholar
  19. 19.
    Clavel-Chapelon F, van Liere MJ, Giubout C, Niravong MY, Goulard H, Le Corre C, Hoang LA, Amoyel J, Auquier A, Duquesnel E (1997) E3N, a French cohort study on cancer risk factors. E3 N Group. Etude Epidemiologique aupres de femmes de l’Education Nationale. Eur J Cancer Prev 6:473–478CrossRefGoogle Scholar
  20. 20.
    Bingham S, Riboli E (2004) Diet and cancer—the European prospective investigation into cancer and nutrition. Nat Rev Cancer 4(3):206–215CrossRefGoogle Scholar
  21. 21.
    van Liere MJ, Lucas F, Clavel F, Slimani N, Villeminot S (1997) Relative validity and reproducibility of a French dietary history questionnaire. Int J Epidemiol 26(suppl 1):128–136CrossRefGoogle Scholar
  22. 22.
    Slimani N, Deharveng G, Unwin I, Southgate DA, Vignat J, Skeie G, Salvini S, Parpinel M, Møller A, Ireland J, Becker W, Farran A, Westenbrink S, Vasilopoulou E, Unwin J, Borgejordet A, Rohrmann S, Church S, Gnagnarella P, Casagrande C, van Bakel M, Niravong M, Boutron-Ruault MC, Stripp C, Tjønneland A, Trichopoulou A, Georga K, Nilsson S, Mattisson I, Ray J, Boeing H, Ocké M, Peeters PH, Jakszyn P, Amiano P, Engeset D, Lund E, de Magistris MS, Sacerdote C, Welch A, Bingham S, Subar AF, Riboli E (2007) The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr 61(9):1037–1056CrossRefGoogle Scholar
  23. 23.
    Bouckaert KP, Slimani N, Nicolas G, Vignat J, Wright AJ, Roe M, Witthöft CM, Finglas PM (2010) Critical evaluation of folate data in European and international databases: recommendations for standardization in international nutritional studies. Mol Nutr Food Res 55(1):166–180CrossRefGoogle Scholar
  24. 24.
    Ainsworth BE, Haskell WL, Leon AS, Jacobs DR Jr, Montoye HJ, Sallis JF, Paffenbarger RS Jr (1993) Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc 25:71–80CrossRefGoogle Scholar
  25. 25.
    Zappacosta B, Persichilli S, Iacoviello L, Di Castelnuovo A, Graziano M, Gervasoni J, Leoncini E, Cimino G, Mastroiacovo P (2013) Folate, vitamin B12 and homocysteine status in an Italian blood donor population. Nutr Metab Cardiovasc Dis 23(5):473–480CrossRefGoogle Scholar
  26. 26.
    Hatzis CM, Bertsias GK, Linardakis M, Scott JM, Kafatos AG (2006) Dietary and other lifestyle correlates of serum folate concentrations in a healthy adult population in Crete, Greece: a cross-sectional study. Nutr J 10(5):5CrossRefGoogle Scholar
  27. 27.
    Hanks J, Ayed I, Kukreja N, Rogers C, Harris J, Gheorghiu A, Liu CL, Emery P, Pufulete M (2013) The association between MTHFR 677C> T genotype and folate status and genomic and gene-specific DNA methylation in the colon of individuals without colorectal neoplasia. Am J Clin Nutr 98(6):1564–1574CrossRefGoogle Scholar
  28. 28.
    Johansson I, Van Guelpen B, Hultdin J, Johansson M, Hallmans G, Stattin P (2010) Validity of food frequency questionnaire estimated intakes of folate and other B vitamins in a region without folic acid fortification. Eur J Clin Nutr 64(8):905–913CrossRefGoogle Scholar
  29. 29.
    Park JY, Vollset SE, Melse-Boonstra A, Chajès V, Ueland PM, Slimani N (2013) Dietary intake and biological measurement of folate: a qualitative review of validation studies. Mol Nutr Food Res 57(4):562–581CrossRefGoogle Scholar
  30. 30.
    Verkleij-Hagoort AC, de Vries JH, Stegers MP, Lindemans J, Ursem NT, Steegers-Theunissen RP (2007) Validation of the assessment of folate and vitamin B12 intake in women of reproductive age: the method of triads. Eur J Clin Nutr 61(5):610–615CrossRefGoogle Scholar
  31. 31.
    Iso H, Moriyama Y, Yoshino K, Sasaki S, Ishihara J, Tsugane S (2003) Validity of the self-administered food frequency questionnaire used in the 5-year follow-up survey for the JPHC Study to assess folate, vitamin B6 and B12 intake: comparison with dietary records and blood level. J Epidemiol 13:s98–s101CrossRefGoogle Scholar
  32. 32.
    Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, Ridker PM, Hunter DJ, Willett WC, Rimm EB, Chasman DI, Hu FB, Qi L (2012) Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med 367:1387–1396CrossRefGoogle Scholar
  33. 33.
    Cafolla A, Dragoni F, Girelli G, Tosti ME, Costante A, Pastorelli D, Bedogni G, Scott S (2000) Folate status in Italian blood donors: relation to gender and smoking. Haematologica 85:694–698Google Scholar
  34. 34.
    Piyathilake CJ, Macaluso M, Hine RJ, Richards EW, Krumdieck CL (1994) Local and systemic effects of cigarette smoking on folate and vitamin B-12. Am J Clin Nutr 60:559–566CrossRefGoogle Scholar
  35. 35.
    Vardavas CI, Linardakis MK, Hatzis CM, Malliaraki N, Saris WH, Kafatos AG (2008) Smoking status in relation to serum folate and dietary vitamin intake. Tob Induc Dis 4:8CrossRefGoogle Scholar
  36. 36.
    De Bree A, Verschuren WM, Kromhout D, Kluijtmans LA, Blom HJ (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54:599–618CrossRefGoogle Scholar
  37. 37.
    Finkelstein JD (1962) Methionine metabolism in mammals: effects of age, diet, and hormones on three enzymes of the pathway in rat tissues. Arch Biochem Biophys 122:583–590CrossRefGoogle Scholar
  38. 38.
    Friso S, Lamon-Fava S, Jang H, Schaefer EJ, Corrocher R, Choi SW (2007) Oestrogen replacement therapy reduces total plasma homocysteine and enhances genomic DNA methylation in postmenopausal women. Br J Nutr 97(4):617–621CrossRefGoogle Scholar
  39. 39.
    Smolders RG, de Meer K, Kenemans P, Jakobs C, Kulik W, van der Mooren MJ (2005) Oral estradiol decreases plasma homocysteine, vitamin B6, and albumin in postmenopausal women but does not change the whole-body homocysteine remethylation and transmethylation flux. J Clin Endocrinol Metab 90:2218–2224CrossRefGoogle Scholar
  40. 40.
    Gibson A, Woodside JV, Young IS, Sharpe PC, Mercer C, Patterson CC, McKinley MC, Kluijtmans LA, Whitehead AS, Evans A (2008) Alcohol increases homocysteine and reduces B vitamin concentration in healthy male volunteers—a randomized, crossover intervention study. QJM 101:881–887CrossRefGoogle Scholar
  41. 41.
    Zappacosta B, Graziano M, Persichilli S, Di Castelnuovo A, Mastroiacovo P, Iacoviello L (2014) 5,10-Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms: genotype frequency and association with homocysteine and folate levels in middle-southern Italian adults. Cell Biochem Funct 32(1):1–4CrossRefGoogle Scholar
  42. 42.
    Tehard B, van Liere MJ, Com Nougué C, Clavel-Chapelon F (2002) Anthropometric measurements and body silhouette of women: validity and perception. J Am Diet Assoc 102(12):1779–1784CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jordi de Batlle
    • 1
    Email author
  • Marco Matejcic
    • 1
  • Veronique Chajes
    • 1
  • Hortensia Moreno-Macias
    • 2
  • Amina Amadou
    • 1
  • Nadia Slimani
    • 1
  • David G. Cox
    • 3
  • Françoise Clavel-Chapelon
    • 4
    • 5
    • 6
  • Guy Fagherazzi
    • 4
    • 5
    • 6
  • Isabelle Romieu
    • 1
  1. 1.International Agency for Research on Cancer (IARC)LyonFrance
  2. 2.Universidad Autónoma MetropolitanaMexico CityMexico
  3. 3.INSERM U1052Cancer Research Center of Lyon, Centre Léon BérardLyonFrance
  4. 4.Team 9: Lifestyle, Genes and Health: Integrative Trans-generational Epidemiology, Center for Research in Epidemiology and Population HealthInstitut National de la Santé et de la Recherche Médicale (INSERM), U1018VillejuifFrance
  5. 5.Université Paris-SudVillejuifFrance
  6. 6.Gustave Roussy InstituteVillejuifFrance

Personalised recommendations