Advertisement

European Journal of Nutrition

, Volume 56, Issue 1, pp 13–27 | Cite as

Acute effects of caffeine-containing energy drinks on physical performance: a systematic review and meta-analysis

  • Diego B. Souza
  • Juan Del Coso
  • Juliano Casonatto
  • Marcos D. Polito
Review

Abstract

Purpose

Caffeine-containing energy drinks (EDs) are currently used as ergogenic aids to improve physical performance in a wide variety of sport disciplines. However, the outcomes of previous investigations on this topic are inconclusive due to methodological differences, especially, in the dosage of the active ingredients and the test used to assess performance.

Methods

We performed a systematic review and meta-analysis of published studies to evaluate the effects of acute ED intake on physical performance. The search for references was conducted in the databases PubMed, ISI Web of Knowledge and SPORTDiscus until December 2015.

Results

Thirty-four studies published between 1998 and 2015 were included in the analysis. Using a random-effects model, effect sizes (ES) were calculated as the standardized mean difference. Overall, ED ingestion improved physical performance in muscle strength and endurance (ES = 0.49; p < 0.001), endurance exercise tests (ES = 0.53; p < 0.001), jumping (ES = 0.29; p = 0.01) and sport-specific actions (ES = 0.51; p < 0.001), but not in sprinting (ES = 0.14; p = 0.06). The meta-regression demonstrated a significant association between taurine dosage (mg) and performance (slope = 0.0001; p = 0.04), but not between caffeine dosage (mg) and performance (slope = 0.0009; p = 0.21).

Conclusion

ED ingestion improved performance in muscle strength and endurance, endurance exercise tests, jumping and sport-specific actions. However, the improvement in performance was associated with taurine dosage.

Keywords

Caffeine Taurine Performance-enhancing substances Sports 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Davis JM, Zhao Z, Stock HS, Mehl K, Buggy J, Hand G (2003) Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol 284:R399–R404CrossRefGoogle Scholar
  2. 2.
    Bazzucchi I, Felici F, Montini M, Figura F, Sacchetti M (2011) Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 43:839–844. doi: 10.1002/mus.21995 CrossRefGoogle Scholar
  3. 3.
    Van Soeren MH, Graham TE (1998) Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol 85:1493–1501Google Scholar
  4. 4.
    McPherson PS et al (1991) The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 7:17–25CrossRefGoogle Scholar
  5. 5.
    Abian P et al (2014) The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players. J Sports Sci 33:1042–1050. doi: 10.1080/02640414.2014.981849 CrossRefGoogle Scholar
  6. 6.
    Alford C, Cox H, Wescott R (2001) The effects of red bull energy drink on human performance and mood. Amino Acids 21:139–150CrossRefGoogle Scholar
  7. 7.
    Stevenson EJ, Hayes PR, Allison SJ (2009) The effect of a carbohydrate-caffeine sports drink on simulated golf performance. Appl Physiol Nutr Metab 34:681–688. doi: 10.1139/H09-057 CrossRefGoogle Scholar
  8. 8.
    Campbell B et al (2013) International society of sports nutrition position stand: energy drinks. J Int Soc Sports Nutr 10:1. doi: 10.1186/1550-2783-10-1 CrossRefGoogle Scholar
  9. 9.
    Mora-Rodriguez R, Pallarés JG (2014) Performance outcomes and unwanted side effects associated with energy drinks. Nutr Rev 72:108–120. doi: 10.1111/nure.12132 CrossRefGoogle Scholar
  10. 10.
    Gurley BJ, Steelman SC, Thomas SL (2015) Multi-ingredient, caffeine-containing dietary supplements: history, safety, and efficacy. Clin Ther 37:275–301. doi: 10.1016/j.clinthera.2014.08.012 CrossRefGoogle Scholar
  11. 11.
    Hoyte CO, Albert D, Heard KJ (2013) The use of energy drinks, dietary supplements, and prescription medications by United States college students to enhance athletic performance. J Community Health 38:575–580. doi: 10.1007/s10900-013-9653-5 CrossRefGoogle Scholar
  12. 12.
    Del Coso J, Portillo J, Muñoz G, Abián-Vicén J, Gonzalez-Millán C, Muñoz-Guerra J (2013) Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids 44:1511–1519. doi: 10.1007/s00726-013-1473-5 CrossRefGoogle Scholar
  13. 13.
    Lara B et al (2014) Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 46:1385–1392. doi: 10.1007/s00726-014-1709-z CrossRefGoogle Scholar
  14. 14.
    Del Coso J et al (2012) Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS ONE 7:e31380. doi: 10.1371/journal.pone.0031380 CrossRefGoogle Scholar
  15. 15.
    Del Coso J et al (2012) Caffeine-containing energy drink improves physical performance of elite rugby players during a simulated match. Appl Physiol Nutr Metab 38:368–374. doi: 10.1139/apnm-2012-0339 CrossRefGoogle Scholar
  16. 16.
    Del Coso J, Salinero J, González-Millán C, Abián-Vicén J, Pérez-González B (2012) Dose response effects of a caffeine-containing energy drink on muscle performance: a repeated measures design. J Int Soc Sports Nutr 9:21. doi: 10.1186/1550-2783-9-21 CrossRefGoogle Scholar
  17. 17.
    Astorino TA, Matera AJ, Basinger J, Evans M, Schurman T, Marquez R (2012) Effects of red bull energy drink on repeated sprint performance in women athletes. Amino Acids 42:1803–1808. doi: 10.1007/s00726-011-0900-8 CrossRefGoogle Scholar
  18. 18.
    Pérez-López A et al (2015) Caffeinated energy drinks improve volleyball performance in elite female players. Med Sci Sports Exerc 47:850–856. doi: 10.1249/MSS.0000000000000455 CrossRefGoogle Scholar
  19. 19.
    Schubert M, Astorino TA, Azevedo JL (2013) The effects of caffeinated “energy shots” on time trial performance. Nutrients 5:2062–2075. doi: 10.3390/nu5062062 CrossRefGoogle Scholar
  20. 20.
    Umaña-Alvarado M, Moncada-Jiménez J (2005) Consumption of an “energy drink” does not improve aerobic performance in male athletes. Int J Appl Sport Sci 17:26–34Google Scholar
  21. 21.
    Quinlivan A et al (2015) The effects of red bull energy drink compared with caffeine on cycling time-trial performance. Int J Sports Physiol Perform 10:897–901. doi: 10.1123/ijspp.2014-0481 CrossRefGoogle Scholar
  22. 22.
    Candow D, Kleisinger A, Grenier S, Dorsch K (2009) Effect of sugar-free red bull energy drink on high-intensity run time-to-exhaustion in young adults. J Strength Cond Res 23:1271–1275. doi: 10.1519/JSC.0b013e3181a026c2 CrossRefGoogle Scholar
  23. 23.
    Kammerer M, Jaramillo JA, Garcia A, Calderon JC, Valbuena LH (2014) Effects of energy drink major bioactive compounds on the performance of young adults in fitness and cognitive tests: a randomized controlled trial. J Int Soc Sport Nutr 11:44. doi: 10.1186/s12970-014-0044-9 CrossRefGoogle Scholar
  24. 24.
    de Morton NA (2009) The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother 55:129–133CrossRefGoogle Scholar
  25. 25.
    Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 83:713–721Google Scholar
  26. 26.
    Hedges LV, Olkin I (2014) Statistical method for meta-analysis. Academic Press, OrlandoGoogle Scholar
  27. 27.
    Card NA (2011) Applied meta-analysis for social science research. Guilford Press, New YorkGoogle Scholar
  28. 28.
    Duval S (2005) The trim and fill method. In: Rothstein HR, Sutton AJ, Borenstein M (eds) Publication bias in meta-analysis. Wiley, West Sussex, pp 127–144Google Scholar
  29. 29.
    Spriet LL (2014) Exercise and sport performance with low doses of caffeine. Sports Med 44:S175–S184. doi: 10.1007/s40279-014-0257-8 CrossRefGoogle Scholar
  30. 30.
    Sünram-Lea SI, Owen-Lynch J, Robinson SJ, Jones E, Hu H (2012) The effect of energy drinks on cortisol levels, cognition and mood during a fire-fighting exercise. Psychopharmacology 219:83–97. doi: 10.1007/s00213-011-2379-0 CrossRefGoogle Scholar
  31. 31.
    Kovacs EM, Stegen JHCH, Brouns F (1998) Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol 85:709–715Google Scholar
  32. 32.
    Graham TE, Spriet LL (1995) Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol 78:867–874Google Scholar
  33. 33.
    Balshaw TG, Bampouras TM, Barry TJ, Sparks SA (2013) The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners. Amino Acids 44:555–561. doi: 10.1007/s00726-012-1372-1 CrossRefGoogle Scholar
  34. 34.
    Eckerson JM et al (2013) Acute ingestion of sugar-free red bull energy drink has no effect on upper body strength and muscular endurance in resistance trained men. J Strength Cond Res 27:2248–2254. doi: 10.1519/JSC.0b013e31827e14f2 CrossRefGoogle Scholar
  35. 35.
    Childs E (2014) Influence of energy drink ingredients on mood and cognitive performance. Nutr Rev 72:48–59. doi: 10.1111/nure.12148 CrossRefGoogle Scholar
  36. 36.
    Izquierdo M, Häkkinen K, Gonzalez-Badillo JJ, Ibáñez J, Gorostiaga EM (2002) Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol 87:264–271CrossRefGoogle Scholar
  37. 37.
    An SM, Park JS, Kim SH (2014) Effect of energy drink dose on exercise capacity, heart rate recovery and heart rate variability after high-intensity exercise. J Exerc Nutr Biochem 18:31–39. doi: 10.5717/jenb.2014.18.1.31 CrossRefGoogle Scholar
  38. 38.
    Cureton KJ, Warren GL, Millard-Stafford ML, Wingo JE, Trilk J, Buyckx M (2007) Caffeinated sports drink: ergogenic effects and possible mechanisms. Int J Sport Nutr Exerc Metab 17:35–55CrossRefGoogle Scholar
  39. 39.
    Dall’Agnol T, Souza PFA (2009) Acute physiological effects of taurine content of an energy drink in physically active subjects. Rev Bras Med Esporte 15:123–126. doi: 10.1590/S1517-86922009000200008 Google Scholar
  40. 40.
    Del Coso J, Pérez-López A, Abian-Vicen J, Salinero JJ, Lara B, Valadés D (2014) Enhancing physical performance in male volleyball players with a caffeine-containing energy drink. Int J Sports Physiol Perform 9:1013–1018. doi: 10.1123/ijspp.2013-0448 CrossRefGoogle Scholar
  41. 41.
    Del Coso J, Portillo J, Salinero JJ, Lara B, Abian-Vicen J, Areces F (2016) Caffeinated energy drinks improve high-speed running in elite field hockey players. Int J Sport Nutr Exerc Metab 26:26–32. doi: 10.1123/ijsnem.2015-0128 CrossRefGoogle Scholar
  42. 42.
    Ganio MS et al (2010) Effect of various carbohydrate-electrolyte fluids on cycling performance and maximal voluntary contraction. Int J Sport Nutr Exerc Metab 20:104–114CrossRefGoogle Scholar
  43. 43.
    Goel V, Manjunatha S, Pai KM (2014) Effect of red bull energy drink on auditory reaction time and maximal voluntary contraction. Indian J Physiol Pharmacol 58:17–21Google Scholar
  44. 44.
    Gwacham N, Wagner DR (2012) Acute effects of a caffeine–taurine energy drink on repeated sprint performance of american college football players. Int J Sport Nutr Exerc Metab 22:109–116CrossRefGoogle Scholar
  45. 45.
    Hoffman JR, Kang J, Ratamess NA, Hoffman MW, Tranchina CP, Faigenbaum AD (2009) Examination of a pre-exercise, high energy supplement on exercise performance. J Int Soc Sports Nutr 6:2. doi: 10.1186/1550-2783-6-2 CrossRefGoogle Scholar
  46. 46.
    Ivy JL et al (2009) Improved cycling time-trial performance after ingestion of a caffeine energy drink. Int J Sport Nutr Exerc Metab 19:61–78CrossRefGoogle Scholar
  47. 47.
    Lara B et al (2015) Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers. Br J Nutr 114:908–914. doi: 10.1017/S0007114515002573 CrossRefGoogle Scholar
  48. 48.
    Nelson MT, Biltz GR, Dengel DR (2014) Cardiovascular and ride time-to-exhaustion effects of an energy drink. J Int Soc Sports Nutr 11:2. doi: 10.1186/1550-2783-11-2 CrossRefGoogle Scholar
  49. 49.
    Van Nieuwenhoven MA, Brouns F, Kovacs EMR (2005) The effect of two sports drinks and water on GI complaints and performance during an 18-km run. Int J Sports Med 26:281–285CrossRefGoogle Scholar
  50. 50.
    Pettitt RW, Niemeyer JD, Sexton PJ, Lipetzky A, Murray SR (2013) Do the noncaffeine ingredients of energy drinks affect metabolic responses to heavy exercise? J Strength Cond Res 27:1994–1999. doi: 10.1519/JSC.0b013e3182736e31 CrossRefGoogle Scholar
  51. 51.
    Phillips MD, Rola KS, Christensen KV, Ross JW, Mitchell JB (2014) Preexercise energy drink consumption does not improve endurance cycling performance but increases lactate, monocyte, and interleukin-6 response. J Strength Cond Res 28:1443–1453. doi: 10.1519/JSC.0000000000000275 CrossRefGoogle Scholar
  52. 52.
    Rahnama N, Gaeini AA, Kazemi F (2010) The effectiveness of two energy drinks on selected indices of maximal cardiorespiratory fitness and blood lactate levels in male athletes. J Res Med Sci 15(3):127–132Google Scholar
  53. 53.
    Ratamess NA, Hoffman JR, Ross R, Shanklin M, Faigenbaum AD, Kang J (2007) Effects of an amino acid/creatine energy supplement on the acute hormonal response to resistance exercise. Int J Sport Nutr Exerc Metab 17:608–623CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Diego B. Souza
    • 1
  • Juan Del Coso
    • 2
  • Juliano Casonatto
    • 3
  • Marcos D. Polito
    • 1
    • 4
  1. 1.Department of Physical EducationLondrina State UniversityLondrinaBrazil
  2. 2.Exercise Physiology LaboratoryCamilo José Cela UniversityMadridSpain
  3. 3.Center of Life Sciences and HealthUniversity of North ParanáLondrinaBrazil
  4. 4.Universidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations