Advertisement

European Journal of Nutrition

, Volume 57, Issue 1, pp 209–218 | Cite as

Maternal diet during pregnancy and micronuclei frequency in peripheral blood T lymphocytes in mothers and newborns (Rhea cohort, Crete)

  • Cristina O’Callaghan-GordoEmail author
  • Manolis Kogevinas
  • Marie Pedersen
  • Eleni Fthenou
  • Ana Espinosa
  • Xristina Tsiapa
  • Georgia Chalkiadaki
  • Vasiliki Daraki
  • Eirini Dermitzaki
  • Ilse Decordier
  • Peter B. Farmer
  • Panagiotis Georgiadis
  • Vaggelis Georgiou
  • Soterios A. Kyrtopoulos
  • Domenico Franco Merlo
  • Dora Romaguera
  • Theano Roumeliotaki
  • Katerina Sarri
  • Margareta Törnqvist
  • Kim Vande Loock
  • Hans von Stedingk
  • Jos Kleinjans
  • Micheline Kirsch-Volders
  • Leda Chatzi
Original Contribution

Abstract

Purpose

The study assessed whether diet and adherence to cancer prevention guidelines during pregnancy were associated with micronucleus (MN) frequency in mothers and newborns. MN is biomarkers of early genetic effects that have been associated with cancer risk in adults.

Methods

A total of 188 mothers and 200 newborns from the Rhea cohort (Greece) were included in the study. At early-mid pregnancy, we conducted personal interviews and a validated food frequency questionnaire was completed. With this information, we constructed a score reflecting adherence to the World Cancer Research Fund/American Institute for Cancer Research cancer prevention guidelines on diet, physical activity and body fatness. At delivery, maternal and/or cord blood was collected to measure DNA and hemoglobin adducts of dietary origin and frequencies of MN in binucleated and mononucleated T lymphocytes (MNBN and MNMONO).

Results

In mothers, higher levels of red meat consumption were associated with increased MNBN frequency [2nd tertile IRR = 1.34 (1.00, 1.80), 3rd tertile IRR = 1.33 (0.96, 1.85)] and MNMONO frequency [2nd tertile IRR = 1.53 (0.84, 2.77), 3rd tertile IRR = 2.69 (1.44, 5.05)]. The opposite trend was observed for MNBN in newborns [2nd tertile IRR = 0.64 (0.44, 0.94), 3rd tertile IRR = 0.68 (0.46, 1.01)], and no association was observed with MNMONO. Increased MN frequency in pregnant women with high red meat consumption is consistent with previous knowledge.

Conclusions

Our results also suggest exposure to genotoxics during pregnancy might affect differently mothers and newborns. The predictive value of MN as biomarker for childhood cancer, rather than adulthood, remains unclear. With few exceptions, the association between maternal carcinogenic exposures during pregnancy and childhood cancer or early biologic effect biomarkers remains poorly understood.

Keywords

Maternal nutrition Cancer Genotoxicity Diet Epidemiology 

Notes

Acknowledgments

We thank all of the participants of the Rhea study and the interviewers, statisticians and the hospital personnel for their cooperation and contribution to this study. We want to thank Dan Segerbäck and Per Rydberg for cooperation and contribution to the DNA and Hb adduct analyses. The Rhea cohort was funded by the following European projects NewGeneris (FP-6-FOOD-CT-2005-016320), ESCAPE (FP7-2007-211250), HiWATE (FP-6-FOOD-CT-2006-036224), Envirogenomarkers (FP7-2008-ENV-1.2.1.4), CHICOS (FP7-2009-GA 241604), and ENRIECO (FP7-2008-GA 226285). COG holds a Sara Borrell postdoctoral fellowship awarded from the Carlos III National Institute of Health (CD13/00072). MP held a Juan de la Cierva postdoctoral fellowship awarded from the Spanish Ministry of Ministry of Economy and Competitiveness (JCI-2011-09479). DFM received support from the Italian Ministry of Health, 5x1000 Grant-2011.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

394_2016_1310_MOESM1_ESM.pdf (303 kb)
Supplementary material 1 (PDF 303 kb)

References

  1. 1.
    Kaatsch P (2010) Epidemiology of childhood cancer. Cancer Treat Rev 36:277–285. doi: 10.1016/j.ctrv.2010.02.003 CrossRefGoogle Scholar
  2. 2.
    Merlo DF, Agramunt S, Anna L et al (2014) Micronuclei in cord blood lymphocytes and associations with biomarkers of exposure to carcinogens and hormonally active factors, gene polymorphisms, and gene expression: the NewGeneris cohort. Environ Health Perspect 122:193–200. doi: 10.1289/ehp.1206324 CrossRefGoogle Scholar
  3. 3.
    Zhang C-Z, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature. doi: 10.1038/nature14493 Google Scholar
  4. 4.
    Bonassi S, Znaor A, Ceppi M et al (2007) An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 28:625–631. doi: 10.1093/carcin/bgl177 CrossRefGoogle Scholar
  5. 5.
    O’Callaghan-Gordo C, Fthenou E, Pedersen M et al (2015) Outdoor air pollution exposures and micronuclei frequencies in lymphocytes from pregnant women and newborns in Crete, Greece (Rhea cohort). Environ Res 143:170–176. doi: 10.1016/j.envres.2015.10.011 CrossRefGoogle Scholar
  6. 6.
    Vande Loock K, Fthenou E, Decordier I et al (2011) Maternal and gestational factors and micronucleus frequencies in umbilical blood: the newgeneris rhea cohort in Crete. Environ Health Perspect 119:1460–1465. doi: 10.1289/ehp.1003246 CrossRefGoogle Scholar
  7. 7.
    Stayner LT, Pedersen M, Patelarou E et al (2014) Exposure to brominated trihalomethanes in water during pregnancy and micronuclei frequency in maternal and cord blood lymphocytes. Environ Health Perspect 122:100–106. doi: 10.1289/ehp.1206434 Google Scholar
  8. 8.
    Wiseman M (2008) The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc 67:253–256. doi: 10.1017/S002966510800712X CrossRefGoogle Scholar
  9. 9.
    Bouvard V, Loomis D, Guyton KZ et al (2015) Carcinogenicity of consumption of red and processed meat. Lancet Oncol 2045:1–2. doi: 10.1016/S1470-2045(15)00444-1 Google Scholar
  10. 10.
    Norat T, Scoccianti C, Boutron-Ruault M-C et al (2015) European Code against Cancer 4th edition: physical activity and cancer. Cancer Epidemiol. doi: 10.1016/j.canep.2015.03.009 Google Scholar
  11. 11.
    Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Cogliano V (2005) WHO international agency for research on cancer monograph working group. Lancet Oncol 6(12):931–932CrossRefGoogle Scholar
  12. 12.
    IARC (1994) Some industrial chemicals. IARC Monogr Eval Carcinog Risks Hum 60:389–434Google Scholar
  13. 13.
    Catsburg CE, Gago-Dominguez M, Yuan J-M et al (2014) Dietary sources of N-nitroso compounds and bladder cancer risk: findings from the Los Angeles bladder cancer study. Int J Cancer 134:125–135. doi: 10.1002/ijc.28331 CrossRefGoogle Scholar
  14. 14.
    Lewin MH, Bailey N, Bandaletova T et al (2006) Red meat enhances the colonic formation of the DNA adduct O6-carboxymethyl guanine: implications for colorectal cancer risk. Cancer Res 66:1859–1865. doi: 10.1158/0008-5472.CAN-05-2237 CrossRefGoogle Scholar
  15. 15.
    Kim E, Coelho D, Blachier F (2013) Review of the association between meat consumption and risk of colorectal cancer. Nutr Res 33:983–994. doi: 10.1016/j.nutres.2013.07.018 CrossRefGoogle Scholar
  16. 16.
    Diggs DL, Huderson AC, Harris KL et al (2011) Polycyclic aromatic hydrocarbons and digestive tract cancers—a perspective. J Environ Sci Health. doi: 10.1080/10590501.2011.629974.Polycyclic Google Scholar
  17. 17.
    EFSA (European Food Safety Authority) (2015) Outcome of the public consultation on the draft Scientific Opinion of the EFSA Panel on Contaminants in the Food Chain (CONTAM) on acrylamide in food. EFSA (European Food Safety Authority), ParmaGoogle Scholar
  18. 18.
    Rice JM (2005) The carcinogenicity of acrylamide. Mutat Res Genet Toxicol Environ Mutagen 580:3–20. doi: 10.1016/j.mrgentox.2004.09.008 CrossRefGoogle Scholar
  19. 19.
    Bunin GR, Kuijten RR, Buckley JD et al (1993) Relation between maternal diet and subsequent primitive neuroectodermal brain tumors in young children. N Engl J Med 329:536–541CrossRefGoogle Scholar
  20. 20.
    Orjuela MA, Titievsky L, Liu X et al (2005) Fruit and vegetable intake during pregnancy and risk for development of sporadic retinoblastoma. Cancer Epidemiol Biomarkers Prev 14:1433–1440. doi: 10.1158/1055-9965.EPI-04-0427 CrossRefGoogle Scholar
  21. 21.
    Lombardi C, Ganguly A, Ritz B, Heck JE (2014) Maternal diet during pregnancy and unilateral retinoblastoma. Cancer Causes Control. doi: 10.1007/s10552-014-0514-z Google Scholar
  22. 22.
    Lope Carvajal V, Pollán M, Fernández M et al (2010) Cytogenetic status in newborns and their parents in Madrid: the BioMadrid study. Environ Mol Mutagen 51:267–277. doi: 10.1002/em.20541 Google Scholar
  23. 23.
    Fenech M, Baghurst P, Luderer W et al (2005) Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, beta-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability–results from a dietary intake and micronucleus inde. Carcinogenesis 26:991–999. doi: 10.1093/carcin/bgi042 CrossRefGoogle Scholar
  24. 24.
    De Coster S, Koppen G, Bracke M et al (2008) Pollutant effects on genotoxic parameters and tumor-associated protein levels in adults: a cross sectional study. Environ Health 7:26. doi: 10.1186/1476-069X-7-26 CrossRefGoogle Scholar
  25. 25.
    Vande Loock K, Botsivali M, Zangogianni M et al (2014) The effect of dietary estimates calculated using food frequency questionnaires on micronuclei formation in European pregnant women: a NewGeneris study. Mutagenesis 29:393–400. doi: 10.1093/mutage/geu052 CrossRefGoogle Scholar
  26. 26.
    Pedersen M, Halldorsson TI, Autrup H et al (2012) Maternal diet and dioxin-like activity, bulky DNA adducts and micronuclei in mother-newborns. Mutat Res Fundam Mol Mech Mutagen 734:12–19. doi: 10.1016/j.mrfmmm.2012.04.006 CrossRefGoogle Scholar
  27. 27.
    Chatzi L, Melaki V, Sarri K et al (2011) Dietary patterns during pregnancy and the risk of postpartum depression: the mother-child “Rhea” cohort in Crete, Greece. Public Health Nutr 14:1663–1670. doi: 10.1017/S1368980010003629 CrossRefGoogle Scholar
  28. 28.
    Merlo DF, Wild CP, Kogevinas M et al (2009) NewGeneris: a European study on maternal diet during pregnancy and child health. Cancer Epidemiol Biomarkers Prev 18:5–10. doi: 10.1158/1055-9965.EPI-08-0876 CrossRefGoogle Scholar
  29. 29.
    Georgiadis P, Kaila S, Makedonopoulou P et al (2011) Development and validation of a new, sensitive immunochemical assay for O6-methylguanine in DNA and its application in a population study. Cancer Epidemiol Biomarkers Prev 20:82–90. doi: 10.1158/1055-9965.EPI-10-0788 CrossRefGoogle Scholar
  30. 30.
    Georgiadis P, Kovács K, Kaila S et al (2012) Development and validation of a direct sandwich chemiluminescence immunoassay for measuring DNA adducts of benzo[a]pyrene and other polycyclic aromatic hydrocarbons. Mutagenesis 27:589–597. doi: 10.1093/mutage/ges024 CrossRefGoogle Scholar
  31. 31.
    Pratt MM, John K, MacLean AB et al (2011) Polycyclic Aromatic Hydrocarbon (PAH) Exposure and DNA Adduct Semi-Quantitation in Archived Human Tissues. Int J Environ Res Public Health 8:2675–2691. doi: 10.3390/ijerph8072675 CrossRefGoogle Scholar
  32. 32.
    Singh R, Leuratti C, Josyula S et al (2001) Lobe-specific increases in malondialdehyde DNA adduct formation in the livers of mice following infection with Helicobacter hepaticus. Carcinogenesis 22:1281–1287. doi: 10.1093/carcin/22.8.1281 CrossRefGoogle Scholar
  33. 33.
    Von Stedingk H, Vikström AC, Rydberg P et al (2011) Analysis of hemoglobin adducts from acrylamide, glycidamide, and ethylene oxide in paired mother/cord blood samples from Denmark. Chem Res Toxicol 24:1957–1965. doi: 10.1021/tx200284u CrossRefGoogle Scholar
  34. 34.
    Pedersen M, Wichmann J, Autrup H et al (2009) Increased micronuclei and bulky DNA adducts in cord blood after maternal exposures to traffic-related air pollution. Environ Res 109:1012–1020. doi: 10.1016/j.envres.2009.08.011 CrossRefGoogle Scholar
  35. 35.
    Romaguera D, Vergnaud A, Peeters PH et al (2012) Is concordance with World Cancer Research Fund/American Institute for Cancer Research guidelines for cancer prevention related to subsequent risk of cancer? Results from the EPIC study. Am J Clin Nutr 1–4:150–163. doi: 10.3945/ajcn.111.031674 CrossRefGoogle Scholar
  36. 36.
    Decordier I, Papine A, Plas G et al (2009) Automated image analysis of cytokinesis-blocked micronuclei: an adapted protocol and a validated scoring procedure for biomonitoring. Mutagenesis 24:85–93. doi: 10.1093/mutage/gen057 CrossRefGoogle Scholar
  37. 37.
    Miller PE, Lesko SM, Muscat JE et al (2010) Dietary patterns and colorectal adenoma and cancer risk: a review of the epidemiological evidence. Nutr Cancer 62:413–424. doi: 10.1080/01635580903407114 CrossRefGoogle Scholar
  38. 38.
    Kotova N, Frostne C, Abramsson-Zetterberg L et al (2014) Differences in micronucleus frequency and acrylamide adduct levels with hemoglobin between vegetarians and non-vegetarians. Eur J Nutr. doi: 10.1007/s00394-014-0796-7 Google Scholar
  39. 39.
    Holtrop G, Johnstone AM, Fyfe C, Gratz SW (2012) Diet composition is associated with endogenous formation of N-nitroso compounds in obese men. J Nutr 142:1652–1658. doi: 10.3945/jn.112.158824 CrossRefGoogle Scholar
  40. 40.
    Holland N, Fucic A, Merlo DF et al (2011) Micronuclei in neonates and children: effects of environmental, genetic, demographic and disease variables. Mutagenesis 26:51–56. doi: 10.1093/mutage/geq064 CrossRefGoogle Scholar
  41. 41.
    Blackburn ST (2007) Maternal, fetal, and neonatal physiology: a clinical perspective, 4th edn. Elsevier, St. LouisGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cristina O’Callaghan-Gordo
    • 1
    • 2
    • 3
    Email author
  • Manolis Kogevinas
    • 1
    • 2
    • 3
    • 4
  • Marie Pedersen
    • 1
    • 2
    • 3
    • 5
    • 6
    • 7
  • Eleni Fthenou
    • 8
  • Ana Espinosa
    • 1
    • 2
    • 3
    • 4
  • Xristina Tsiapa
    • 1
    • 2
    • 3
    • 8
  • Georgia Chalkiadaki
    • 8
  • Vasiliki Daraki
    • 8
  • Eirini Dermitzaki
    • 8
  • Ilse Decordier
    • 9
  • Peter B. Farmer
    • 10
  • Panagiotis Georgiadis
    • 11
  • Vaggelis Georgiou
    • 8
  • Soterios A. Kyrtopoulos
    • 11
  • Domenico Franco Merlo
    • 12
  • Dora Romaguera
    • 1
    • 2
    • 3
    • 13
  • Theano Roumeliotaki
    • 8
  • Katerina Sarri
    • 8
  • Margareta Törnqvist
    • 14
  • Kim Vande Loock
    • 9
  • Hans von Stedingk
    • 14
  • Jos Kleinjans
    • 15
  • Micheline Kirsch-Volders
    • 9
  • Leda Chatzi
    • 8
  1. 1.ISGlobal, Centre for Research in Environmental Epidemiology (CREAL)BarcelonaSpain
  2. 2.Universitat Pompeu Fabra (UPF)BarcelonaSpain
  3. 3.CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
  4. 4.IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
  5. 5.National Institute of Health and Medical Research (INSERM), U823, Team of Environmental Epidemiology Applied to Reproduction and Respiratory HealthInstitute Albert BonniotGrenobleFrance
  6. 6.Department of Public Health, Centre for Epidemiology and Screening CSSUniversity of CopenhagenCopenhagenDenmark
  7. 7.Diet, Genes and EnvironmentDanish Cancer Society Research CenterCopenhagenDenmark
  8. 8.Faculty of MedicineUniversity of CreteHeraklionGreece
  9. 9.Laboratory of Cell Genetics, Faculty of Science and Bio-engineeringVrije Universitei BrusselBrusselsBelgium
  10. 10.Cancer Studies and Molecular MedicineUniversity of LeicesterLeicesterUK
  11. 11.National Hellenic Research FoundationInstitute of Biology, Medicinal Chemistry and BiotechnologyAthensGreece
  12. 12.Epidemiology, Biostatistics, and Clinical TrialsIstituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria (AOU) San Martino-Istituto Nazionale per la Ricerca sul Cancro (IST)GenoaItaly
  13. 13.CIBER Fisiopatología de la Obesidad y NutriciónCIBER-OBNMadridSpain
  14. 14.Department of Environmental Science and Analytical ChemistryStockholm UniversityStockholmSweden
  15. 15.Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations