European Journal of Nutrition

, Volume 57, Issue 1, pp 119–135 | Cite as

Metabolic adaptations to HFHS overfeeding: how whole body and tissues postprandial metabolic flexibility adapt in Yucatan mini-pigs

  • Sergio PolakofEmail author
  • Didier Rémond
  • Annick Bernalier-Donadille
  • Mathieu Rambeau
  • Estelle Pujos-Guillot
  • Blandine Comte
  • Dominique Dardevet
  • Isabelle Savary-Auzeloux
Original Contribution



In the present study, we aimed to metabolically characterize the postprandial adaptations of the major tissues involved in energy, lipids and amino acids metabolisms in mini-pigs.


Mini-pigs were fed on high-fat–high-sucrose (HFHS) diet for 2 months and several tissues explored for metabolic analyses. Further, the urine metabolome was followed over the time to picture the metabolic adaptations occurring at the whole body level following overfeeding.


After 2 months of HFHS consumption, mini-pigs displayed an obese phenotype characterized by high circulating insulin, triglycerides and cholesterol levels. At the tissue level, a general (muscle, adipose tissue, intestine) reduction in the capacity to phosphorylate glucose was observed. This was also supported by the enhanced hepatic gluconeogenesis potential, despite the concomitant normoglycaemia, suggesting that the high circulating insulin levels would be enough to maintain glucose homoeostasis. The HFHS feeding also resulted in a reduced capacity of two other pathways: the de novo lipogenesis, and the branched-chain amino acids transamination. Finally, the follow-up of the urine metabolome over the time allowed determining breaking points in the metabolic trajectory of the animals.


Several features confirmed the pertinence of the animal model, including increased body weight, adiposity and porcine obesity index. At the metabolic level, we observed a perturbed glucose and amino acid metabolism, known to be related to the onset of the obesity. The urine metabolome analyses revealed several metabolic pathways potentially involved in the obesity onset, including TCA (citrate, pantothenic acid), amino acids catabolism (cysteine, threonine, leucine).


High-fat–high-sucrose diet Mini-pigs Glucose and lipid metabolism Metabolomics Postprandial 



The authors acknowledge J. David, C. Prolhac, D. Durand and the personnel of the Animal Facility (C. de L’Homme, B. Cohade) for technical assistance

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Adochio RL, Leitner JW, Gray K, Draznin B, Cornier MA (2009) Early responses of insulin signaling to high-carbohydrate and high-fat overfeeding. Nutr Metab 6:37CrossRefGoogle Scholar
  2. 2.
    Basu A, Basu R, Shah P, Vella A, Johnson CM, Nair KS, Jensen MD, Schwenk WF, Rizza RA (2000) Effects of type 2 diabetes on the ability of insulin and glucose to regulate splanchnic and muscle glucose metabolism: evidence for a defect in hepatic glucokinase activity. Diabetes 49:272–283CrossRefGoogle Scholar
  3. 3.
    Hoy AJ, Brandon AE, Turner N, Watt MJ, Bruce CR, Cooney GJ, Kraegen EW (2009) Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation. Am J Physiol Endocrinol Metab 297:E67–E75CrossRefGoogle Scholar
  4. 4.
    Kraegen EW, Clark PW, Jenkins AB, Daley EA, Chisholm DJ, Storlien LH (1991) Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 40:1397–1403CrossRefGoogle Scholar
  5. 5.
    Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, Martin P, Philippe C, Walker F, Bado A, Perlemuter G, Cassard-Doulcier AM, Gerard P (2013) Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62:1787–1794CrossRefGoogle Scholar
  6. 6.
    Machado MV, Ferreira DM, Castro RE, Silvestre AR, Evangelista T, Coutinho J, Carepa F, Costa A, Rodrigues CM, Cortez-Pinto H (2012) Liver and muscle in morbid obesity: the interplay of fatty liver and insulin resistance. PLoS One 7:e31738CrossRefGoogle Scholar
  7. 7.
    Turner N, Kowalski GM, Leslie SJ, Risis S, Yang C, Lee-Young RS, Babb JR, Meikle PJ, Lancaster GI, Henstridge DC, White PJ, Kraegen EW, Marette A, Cooney GJ, Febbraio MA, Bruce CR (2013) Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 56:1638–1648CrossRefGoogle Scholar
  8. 8.
    Kleemann R, van Erk M, Verschuren L, van den Hoek AM, Koek M, Wielinga PY, Jie A, Pellis L, Bobeldijk-Pastorova I, Kelder T, Toet K, Wopereis S, Cnubben N, Evelo C, van Ommen B, Kooistra T (2010) Time-resolved and tissue-specific systems analysis of the pathogenesis of insulin resistance. PLoS One 5:e8817CrossRefGoogle Scholar
  9. 9.
    Turner N, Cooney GJ, Kraegen EW, Bruce CR (2014) Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocrinol 220:T61–T79CrossRefGoogle Scholar
  10. 10.
    Schmitz-Peiffer C (2000) Signalling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply. Cell Signal 12:583–594CrossRefGoogle Scholar
  11. 11.
    Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453CrossRefGoogle Scholar
  12. 12.
    Xu F, Tavintharan S, Sum CF, Woon K, Lim SC, Ong CN (2013) Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. J Clin Endocrinol Metab 98:E1060–E1065CrossRefGoogle Scholar
  13. 13.
    Polakof S, Rémond D, Rambeau M, Pujos-Guillot E, Sébédio J-L, Dardevet D, Comte B, Savary-Auzeloux I (2014) Postprandial metabolic events in mini-pigs: new insights from a combined approach using plasma metabolomics, tissue gene expression, and enzyme activity. Metabolomics: 1–16Google Scholar
  14. 14.
    Wishart DS (2007) Current progress in computational metabolomics. Brief Bioinform 8(5):279–293CrossRefGoogle Scholar
  15. 15.
    Zhu Y, Feng Y, Shen L, Xu D, Wang B, Ruan K, Cong W (2013) Effect of metformin on the urinary metabolites of diet-induced-obese mice studied by ultra performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC-TOF/MS). J Chromatogr B 925:110–116CrossRefGoogle Scholar
  16. 16.
    Pedersen R, Ingerslev HC, Sturek M, Alloosh M, Cirera S, Christoffersen BO, Moesgaard SG, Larsen N, Boye M (2013) Characterisation of gut microbiota in Ossabaw and Gottingen minipigs as models of obesity and metabolic syndrome. PLoS One 8:e56612CrossRefGoogle Scholar
  17. 17.
    Guillerm-Regost C, Louveau I, Sebert SP, Damon M, Champ MM, Gondret F (2006) Cellular and biochemical features of skeletal muscle in obese Yucatan minipigs. Obesity (Silver Spring) 14:1700–1707CrossRefGoogle Scholar
  18. 18.
    Nielsen KL, Hartvigsen ML, Hedemann MS, Laerke HN, Hermansen K, Bach Knudsen KE (2014) Similar metabolic responses in pigs and humans to breads with different contents and compositions of dietary fibers: a metabolomics study. Am J Clin Nutr 99:941–949CrossRefGoogle Scholar
  19. 19.
    Litten-Brown JC, Corson AM, Clarke L (2010) Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal 4:899–920CrossRefGoogle Scholar
  20. 20.
    Christoffersen B, Ribel U, Raun K, Golozoubova V, Pacini G (2009) Evaluation of different methods for assessment of insulin sensitivity in Göttingen minipigs: introduction of a new, simpler method. Am J Physiol Regul Integr Comp Physiol 297:R1195–R1201CrossRefGoogle Scholar
  21. 21.
    Spurlock ME, Gabler NK (2008) The development of porcine models of obesity and the metabolic syndrome. J Nutr 138:397–402CrossRefGoogle Scholar
  22. 22.
    Keppler D, Decker K, Bergmeyer HU (1974) Glycogen determination with amyloglucosidase. Methods of enzymatic analysis. Academic Press, New York, pp 1127–1131Google Scholar
  23. 23.
    Pereira H, Martin J-F, Joly C, Sébédio J-L, Pujos-Guillot E (2010) Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma. Metabolomics 6:207–218CrossRefGoogle Scholar
  24. 24.
    Benton HP, Wong DM, Trauger SA, Siuzdak G (2008) XCMS2: processing tandem mass spectrometry data for metabolite identification and structural characterization. Anal Chem 80:6382–6389CrossRefGoogle Scholar
  25. 25.
    Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787CrossRefGoogle Scholar
  26. 26.
    Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3:211–221CrossRefGoogle Scholar
  27. 27.
    Furet JP, Firmesse O, Gourmelon M, Bridonneau C, Tap J, Mondot S, Dore J, Corthier G (2009) Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS Microbiol Ecol 68:351–362CrossRefGoogle Scholar
  28. 28.
    Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K (2008) Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 47:367–373CrossRefGoogle Scholar
  29. 29.
    Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R (2004) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70:7220–7228CrossRefGoogle Scholar
  30. 30.
    Malinen E, Rinttila T, Kajander K, Matto J, Kassinen A, Krogius L, Saarela M, Korpela R, Palva A (2005) Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am J Gastroenterol 100:373–382CrossRefGoogle Scholar
  31. 31.
    Cloetens L, Broekaert WF, Delaedt Y, Ollevier F, Courtin CM, Delcour JA, Rutgeerts P, Verbeke K (2010) Tolerance of arabinoxylan-oligosaccharides and their prebiotic activity in healthy subjects: a randomised, placebo-controlled cross-over study. Br J Nutr 103:703–713CrossRefGoogle Scholar
  32. 32.
    Tana C, Umesaki Y, Imaoka A, Handa T, Kanazawa M, Fukudo S (2010) Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil 22(512–519):e114–e515Google Scholar
  33. 33.
    Ohene-Adjei S, Teather RM, Ivan M, Forster RJ (2007) Postinoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen. Appl Environ Microbiol 73:4609–4618CrossRefGoogle Scholar
  34. 34.
    Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 101:541–550CrossRefGoogle Scholar
  35. 35.
    Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S (2007) Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 73:7767–7770CrossRefGoogle Scholar
  36. 36.
    Caraux G, Pinloche S (2005) PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21:1280–1281CrossRefGoogle Scholar
  37. 37.
    Sebert SP, Lecannu G, Kozlowski F, Siliart B, Bard JM, Krempf M, Champ MM (2005) Childhood obesity and insulin resistance in a Yucatan mini-piglet model: putative roles of IGF-1 and muscle PPARs in adipose tissue activity and development. Int J Obes (Lond) 29:324–333CrossRefGoogle Scholar
  38. 38.
    Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723CrossRefGoogle Scholar
  39. 39.
    Xi S, Yin W, Wang Z, Kusunoki M, Lian X, Koike T, Fan J, Zhang Q (2004) A minipig model of high-fat/high-sucrose diet-induced diabetes and atherosclerosis. Int J Exp Pathol 85:223–231CrossRefGoogle Scholar
  40. 40.
    Dyson MC, Alloosh M, Vuchetich JP, Mokelke EA, Sturek M (2006) Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet. Comp Med 56:35–45Google Scholar
  41. 41.
    Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339CrossRefGoogle Scholar
  42. 42.
    Croset M, Rajas F, Zitoun C, Hurot JM, Montano S, Mithieux G (2001) Rat small intestine is an insulin-sensitive gluconeogenic organ. Diabetes 50:740–746CrossRefGoogle Scholar
  43. 43.
    Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13:376–388CrossRefGoogle Scholar
  44. 44.
    Stanhope KL (2012) Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annu Rev Med 63:329–343CrossRefGoogle Scholar
  45. 45.
    Hellerstein MK (1999) De novo lipogenesis in humans: metabolic and regulatory aspects. Eur J Clin Nutr 53(Suppl 1):S53–S65CrossRefGoogle Scholar
  46. 46.
    Mithieux G (2009) A novel function of intestinal gluconeogenesis: central signaling in glucose and energy homeostasis. Nutrition 25:881–884CrossRefGoogle Scholar
  47. 47.
    Sejersen H, Sørensen MT, Larsen T, Bendixen E, Ingvartsen KL (2013) Liver protein expression in young pigs in response to a high-fat diet and diet restriction. J Anim Sci 91:147–158CrossRefGoogle Scholar
  48. 48.
    Iozzo P, Bucci M, Roivainen A, Någren K, Järvisalo MJ, Kiss J, Guiducci L, Fielding B, Naum AG, Borra R, Virtanen K, Savunen T, Salvadori PA, Ferrannini E, Knuuti J, Nuutila P (2010) Fatty acid metabolism in the liver, measured by positron emission tomography is increased in obese individuals. Gastroenterology 139(846–856):e846CrossRefGoogle Scholar
  49. 49.
    Newgard CB (2012) Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab 15:606–614CrossRefGoogle Scholar
  50. 50.
    Lynch CJ, Adams SH (2014) Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev.Endocrinol 10(12):723–736CrossRefGoogle Scholar
  51. 51.
    Shin AC, Fasshauer M, Filatova N, Grundell LA, Zielinski E, Zhou JY, Scherer T, Lindtner C, White PJ, Lapworth AL, Ilkayeva O, Knippschild U, Wolf AM, Scheja L, Grove KL, Smith RD, Qian WJ, Lynch CJ, Newgard CB, Buettner C (2014) Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Cell Metab 20:898–909CrossRefGoogle Scholar
  52. 52.
    She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ (2007) Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab 293:E1552–E1563CrossRefGoogle Scholar
  53. 53.
    Morio B, Comte B, Martin J-F, Chanseaume E, Alligier M, Junot C, Lyan B, Boirie Y, Vidal H, Laville M, Pujos-Guillot E, Sébédio J-L (2014) Metabolomics reveals differential metabolic adjustments of normal and overweight subjects during overfeeding. Metabolomics 11(4):920–938CrossRefGoogle Scholar
  54. 54.
    Lillefosse HH, Clausen MR, Yde CC, Ditlev DB, Zhang X, Du Z-Y, Bertram HC, Madsen L, Kristiansen K, Liaset B (2014) Urinary loss of tricarboxylic acid cycle intermediates as revealed by metabolomics studies: an underlying mechanism to reduce lipid Accretion by whey protein ingestion? J Proteome Res 13:2560–2570CrossRefGoogle Scholar
  55. 55.
    Adams SH (2011) Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv Nutr Int Rev J 2:445–456CrossRefGoogle Scholar
  56. 56.
    Legro RS, Finegood D, Dunaif A (1998) A fasting glucose to insulin ratio is a useful measure of insulin sensitivity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 83:2694–2698Google Scholar
  57. 57.
    Sebert SP, Lecannu G, Kozlowski F, Siliart B, Bard JM, Krempf M, Champ MMJ (2005) Childhood obesity and insulin resistance in a Yucatan mini-piglet model: putative roles of IGF-1 and muscle PPARs in adipose tissue activity and development. Int J Obes Relat Metab Disord 29:324–333CrossRefGoogle Scholar
  58. 58.
    Witczak CA, Mokelke EA, Boullion R, Wenzel J, Keisler DH, Sturek M (2005) Noninvasive measures of body fat percentage in male Yucatan swine. Comp Med 55:445–451Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sergio Polakof
    • 1
    • 2
    Email author
  • Didier Rémond
    • 1
    • 2
  • Annick Bernalier-Donadille
    • 4
  • Mathieu Rambeau
    • 1
    • 2
  • Estelle Pujos-Guillot
    • 1
    • 2
    • 3
  • Blandine Comte
    • 1
    • 2
  • Dominique Dardevet
    • 1
    • 2
  • Isabelle Savary-Auzeloux
    • 1
    • 2
  1. 1.Unité de Nutrition HumaineClermont Université, Université d’AuvergneClermont-FerrandFrance
  2. 2.UMR 1019, UNHCRNH Auvergne, INRAClermont-FerrandFrance
  3. 3.UMR 1019, Plateforme d’Exploration du Métabolisme, UNHINRAClermont-FerrandFrance
  4. 4.Unité de Microbiologie, UR454INRASaint Genès ChampanelleFrance

Personalised recommendations