European Journal of Nutrition

, Volume 56, Issue 8, pp 2519–2527 | Cite as

Oral citrulline supplementation protects female mice from the development of non-alcoholic fatty liver disease (NAFLD)

  • Cathrin Sellmann
  • Cheng Jun Jin
  • Anna Janina Engstler
  • Jean-Pascal De Bandt
  • Ina Bergheim
Original Contribution



Impairments of intestinal barrier function are discussed as risk factors for the development and progression of non-alcoholic fatty liver disease (NAFLD). Studies suggest an association between arginine/citrulline homeostasis and the development of liver damages. Here, the effect of an oral l-citrulline (Cit) supplement on the development of a Western-style diet (WSD)-induced NAFLD was determined in mice.


Female 6- to 8-week-old C57BL/6J mice were either pair-fed a liquid Western-style or control diet (C) ± 2.5 g/kg bodyweight Cit for 6 weeks (C + Cit or WSD + Cit). Indices of liver damage, glucose metabolism, intestinal barrier function and NO synthesis were measured.


While bodyweight gain was similar between groups, markers of glucose metabolism like fasting blood glucose and HOMA index and markers of liver damage like hepatic triglyceride levels, number of neutrophils and plasminogen activator inhibitor-1 protein levels were significantly lower in WSD + Cit-fed mice when compared to WSD-fed mice only. Protein levels of the tight junction proteins occludin and zonula occludens-1 in duodenum were significantly lower in mice fed a WSD when compared to those fed a WSD + Cit (−~70 and −~60 %, respectively, P < 0.05), whereas portal endotoxin levels, concentration of 3-nitrotyrosine protein adducts in duodenum and toll-like receptor-4 mRNA expression in livers of WSD + Cit-fed mice were markedly lower than in WSD-fed mice (−~43 %, P = 0.056; −~80 and −~48 %, respectively, P < 0.05).


Our data suggest that the protective effects of supplementing Cit on the development of NAFLD in mice are associated with a decreased translocation of endotoxin into the portal vein.


Citrulline Intestinal barrier function Endotoxin Occludin Non-alcoholic fatty liver disease 



Alanine aminotransferase


Aspartate aminotransferase





HOMA index

Homeostasis model assessment index


Inducible nitric oxide synthase


Myeloid differentiation primary response gene 88


Non-alcoholic fatty liver disease


Non-alcoholic fatty liver disease activity score


Non-alcoholic steatohepatitis


Plasminogen activator inhibitor 1




Toll-like receptor


Tumor necrosis factor alpha


Western-style diet


Zonula occludens 1




4-Hydroxynonenal protein adducts



The present study was funded by a grant from the German Research Foundation (DFG): BE 2376/6-1 (I. B.).

Compliance with ethical standards

Conflict of interest

C. Sellmann, C.J. Jin, A.J. Engstler and I. Bergheim have no conflicts of interest. J-P De Bandt is a shareholder of Citrage company.

Ethical approval

Approval for all experiments was provided by the local Institutional Animal Care and Use Committee (IACUC).

Supplementary material

394_2016_1287_MOESM1_ESM.pdf (400 kb)
Supplementary material 1 (PDF 400 kb)
394_2016_1287_MOESM2_ESM.pdf (166 kb)
Supplementary material 2 (PDF 166 kb)
394_2016_1287_MOESM3_ESM.pdf (144 kb)
Supplementary material 3 (PDF 144 kb)


  1. 1.
    Sass DA, Chang P, Chopra KB (2005) Nonalcoholic fatty liver disease: a clinical review. Dig Dis Sci 50:171–180CrossRefGoogle Scholar
  2. 2.
    Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S (2005) Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 42:44–52CrossRefGoogle Scholar
  3. 3.
    Bellentani S, Scaglioni F, Marino M, Bedogni G (2010) Epidemiology of non-alcoholic fatty liver disease. Dig Dis 28:155–161CrossRefGoogle Scholar
  4. 4.
    Blachier M, Leleu H, Peck-Radosavljevic M, Valla DC, Roudot-Thoraval F (2013) The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol 58:593–608CrossRefGoogle Scholar
  5. 5.
    Hashimoto E, Tokushige K, Ludwig J (2015) Diagnosis and classification of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis: current concepts and remaining challenges. Hepatol Res 45:20–28CrossRefGoogle Scholar
  6. 6.
    Jiang CM, Pu CW, Hou YH, Chen Z, Alanazy M, Hebbard L (2014) Non alcoholic steatohepatitis a precursor for hepatocellular carcinoma development. World J Gastroenterol 20:16464–16473CrossRefGoogle Scholar
  7. 7.
    Schnabl B, Brenner DA (2014) Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146:1513–1524CrossRefGoogle Scholar
  8. 8.
    Volynets V, Kuper MA, Strahl S, Maier IB, Spruss A, Wagnerberger S, Konigsrainer A, Bischoff SC, Bergheim I (2012) Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci 57:1932–1941CrossRefGoogle Scholar
  9. 9.
    Spruss A, Kanuri G, Stahl C, Bischoff SC, Bergheim I (2012) Metformin protects against the development of fructose-induced steatosis in mice: role of the intestinal barrier function. Lab Invest 92:1020–1032CrossRefGoogle Scholar
  10. 10.
    Breuillard C, Cynober L, Moinard C (2015) Citrulline and nitrogen homeostasis: an overview. Amino Acids 47:685–691CrossRefGoogle Scholar
  11. 11.
    van de Poll MC, Ligthart-Melis GC, Boelens PG, Deutz NE, van Leeuwen PA, Dejong CH (2007) Intestinal and hepatic metabolism of glutamine and citrulline in humans. J Physiol 581:819–827CrossRefGoogle Scholar
  12. 12.
    Wijnands KA, Castermans TM, Hommen MP, Meesters DM, Poeze M (2015) Arginine and citrulline and the immune response in sepsis. Nutrients 7:1426–1463CrossRefGoogle Scholar
  13. 13.
    Akashi K, Miyake C, Yokota A (2001) Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett 508:438–442CrossRefGoogle Scholar
  14. 14.
    Chien SJ, Lin KM, Kuo HC, Huang CF, Lin YJ, Huang LT, Tain YL (2014) Two different approaches to restore renal nitric oxide and prevent hypertension in young spontaneously hypertensive rats: l-citrulline and nitrate. Transl Res 163:43–52CrossRefGoogle Scholar
  15. 15.
    Wu G, Collins JK, Perkins-Veazie P, Siddiq M, Dolan KD, Kelly KA, Heaps CL, Meininger CJ (2007) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685Google Scholar
  16. 16.
    Antunes MM, Leocadio PC, Teixeira LG, Leonel AJ, Cara DC, Menezes GB, Generoso SV, Cardoso VN, Alvarez-Leite JI, Correia MI (2015) Pretreatment with l-citrulline positively affects the mucosal architecture and permeability of the small intestine in a murine mucositis model. JPEN J Parenter Enteral Nutr 40:279–286CrossRefGoogle Scholar
  17. 17.
    Spruss A, Henkel J, Kanuri G, Blank D, Puschel GP, Bischoff SC, Bergheim I (2012) Female mice are more susceptible to nonalcoholic fatty liver disease: sex-specific regulation of the hepatic AMP-activated protein kinase-plasminogen activator inhibitor 1 cascade, but not the hepatic endotoxin response. Mol Med 18:1346–1355CrossRefGoogle Scholar
  18. 18.
    Kanuri G, Wagnerberger S, Landmann M, Prigl E, Hellerbrand C, Bischoff SC, Bergheim I (2015) Effect of acute beer ingestion on the liver: studies in female mice. Eur J Nutr 54:465–474CrossRefGoogle Scholar
  19. 19.
    Sellmann C, Priebs J, Landmann M, Degen C, Engstler AJ, Jin CJ, Garttner S, Spruss A, Huber O, Bergheim I (2015) Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. J Nutr Biochem 26:1183–1192CrossRefGoogle Scholar
  20. 20.
    Jegatheesan P, Beutheu S, Ventura G, Sarfati G, Nubret E, Kapel N, Waligora-Dupriet AJ, Bergheim I, Cynober L, De-Bandt JP (2015) Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease. Clin Nutr 35:175–182CrossRefGoogle Scholar
  21. 21.
    Jegatheesan P, Beutheu S, Ventura G, Nubret E, Sarfati G, Bergheim I, De Bandt JP (2015) Citrulline and nonessential amino acids prevent fructose-induced nonalcoholic fatty liver disease in rats. J Nutr 145:2273–2279CrossRefGoogle Scholar
  22. 22.
    Demir M, Lang S, Steffen HM (2015) Nonalcoholic fatty liver disease—current status and future directions. J Dig Dis 16:541–557CrossRefGoogle Scholar
  23. 23.
    Portillo-Sanchez P, Bril F, Maximos M, Lomonaco R, Biernacki D, Orsak B, Subbarayan S, Webb A, Hecht J, Cusi K (2015) High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels. J Clin Endocrinol Metab 100:2231–2238CrossRefGoogle Scholar
  24. 24.
    Maximos M, Bril F, Portillo SP, Lomonaco R, Orsak B, Biernacki D, Suman A, Weber M, Cusi K (2015) The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease. Hepatology 61:153–160CrossRefGoogle Scholar
  25. 25.
    Singh SP, Misra B, Kar SK, Panigrahi MK, Misra D, Bhuyan P, Pattnaik K, Meher C, Agrawal O, Rout N, Swain M (2015) Nonalcoholic fatty liver disease (NAFLD) without insulin resistance: is it different? Clin Res Hepatol Gastroenterol 39:482–488CrossRefGoogle Scholar
  26. 26.
    Kirpich IA, Marsano LS, McClain CJ (2015) Gut-liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem 48:923–930CrossRefGoogle Scholar
  27. 27.
    Abdul-Hai A, Abdallah A, Malnick SD (2015) Influence of gut bacteria on development and progression of non-alcoholic fatty liver disease. World J Hepatol 7:1679–1684CrossRefGoogle Scholar
  28. 28.
    Batista MA, Nicoli JR, Martins FS, Machado JA, Arantes RM, Quirino IE, Correia MI, Cardoso VN (2012) Pretreatment with citrulline improves gut barrier after intestinal obstruction in mice. JPEN J Parenter Enteral Nutr 36:69–76CrossRefGoogle Scholar
  29. 29.
    Chapman JC, Liu Y, Zhu L, Rhoads JM (2012) Arginine and citrulline protect intestinal cell monolayer tight junctions from hypoxia-induced injury in piglets. Pediatr Res 72:576–582CrossRefGoogle Scholar
  30. 30.
    Gou L, Zhang L, Yin C, Jia G, Yin X, Zhuang X, Xu X, Liu Y (2011) Protective effect of l-citrulline against acute gastric mucosal lesions induced by ischemia–reperfusion in rats. Can J Physiol Pharmacol 89:317–327CrossRefGoogle Scholar
  31. 31.
    Lai CH, Lee CH, Hung CY, Lo HC (2015) Oral citrulline mitigates inflammation and jejunal damage via the inactivation of neuronal nitric oxide synthase and nuclear factor-kappaB in intestinal ischemia and reperfusion. JPEN J Parenter Enteral Nutr. doi: 10.1177/0148607115590661 Google Scholar
  32. 32.
    Fu X, Li S, Jia G, Gou L, Tian X, Sun L, Ling X, Lan N, Yin X, Ma R, Liu L, Liu Y (2013) Protective effect of the nitric oxide pathway in l-citrulline renal ischaemia–reperfusion injury in rats. Folia Biol (Praha) 59:225–232Google Scholar
  33. 33.
    Wijnands KA, Vink H, Briede JJ, van Faassen EE, Lamers WH, Buurman WA, Poeze M (2012) Citrulline a more suitable substrate than arginine to restore NO production and the microcirculation during endotoxemia. PLoS One 7:e37439CrossRefGoogle Scholar
  34. 34.
    Du PJ, Vanheel H, Janssen CE, Roos L, Slavik T, Stivaktas PI, Nieuwoudt M, van Wyk SG, Vieira W, Pretorius E, Beukes M, Farre R, Tack J, Laleman W, Fevery J, Nevens F, Roskams T, Van der Merwe SW (2013) Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J Hepatol 58:1125–1132CrossRefGoogle Scholar
  35. 35.
    Emami CN, Petrosyan M, Giuliani S, Williams M, Hunter C, Prasadarao NV, Ford HR (2009) Role of the host defense system and intestinal microbial flora in the pathogenesis of necrotizing enterocolitis. Surg Infect (Larchmt) 10:407–417CrossRefGoogle Scholar
  36. 36.
    Dai ZL, Li XL, Xi PB, Zhang J, Wu G, Zhu WY (2012) Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids 43:233–244CrossRefGoogle Scholar
  37. 37.
    Kesar V, Odin JA (2014) Toll-like receptors and liver disease. Liver Int 34:184–196CrossRefGoogle Scholar
  38. 38.
    Kanuri G, Ladurner R, Skibovskaya J, Spruss A, Konigsrainer A, Bischoff SC, Bergheim I (2015) Expression of toll-like receptors 1–5 but not TLR 6–10 is elevated in livers of patients with non-alcoholic fatty liver disease. Liver Int 35:562–568CrossRefGoogle Scholar
  39. 39.
    Wagnerberger S, Spruss A, Kanuri G, Volynets V, Stahl C, Bischoff SC, Bergheim I (2012) Toll-like receptors 1–9 are elevated in livers with fructose-induced hepatic steatosis. Br J Nutr 107:1727–1738CrossRefGoogle Scholar
  40. 40.
    Chen BY, Lin DP, Su KC, Chen YL, Wu CY, Teng MC, Tsai YT, Sun CY, Wang SR, Chang HH (2011) Dietary zerumbone prevents against ultraviolet B-induced cataractogenesis in the mouse. Mol Vis 17:723–730Google Scholar
  41. 41.
    Locatelli I, Sutti S, Vacchiano M, Bozzola C, Albano E (2013) NF-kappaB1 deficiency stimulates the progression of non-alcoholic steatohepatitis (NASH) in mice by promoting NKT-cell-mediated responses. Clin Sci (Lond) 124:279–287CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cathrin Sellmann
    • 1
  • Cheng Jun Jin
    • 1
  • Anna Janina Engstler
    • 1
  • Jean-Pascal De Bandt
    • 2
    • 3
  • Ina Bergheim
    • 1
  1. 1.Institute of Nutritional Sciences, SD Model Systems of Molecular NutritionFriedrich-Schiller University JenaJenaGermany
  2. 2.Nutrition Biology Laboratory EA4466, Faculty of PharmacyParis Descartes University, Sorbonne Paris CitéParisFrance
  3. 3.Clinical Chemistry Department, Paris Centre University HospitalsAPHPParisFrance

Personalised recommendations