Advertisement

European Journal of Nutrition

, Volume 56, Issue 8, pp 2497–2505 | Cite as

Circulating ferritin concentrations are differentially associated with serum adipokine concentrations in Japanese men and premenopausal women

  • Yasumi Kimura
  • Kazuki Yasuda
  • Kayo Kurotani
  • Shamima Akter
  • Ikuko Kashino
  • Hitomi Hayabuchi
  • Masao Sato
  • Tetsuya Mizoue
Original Contribution

Abstract

Purpose

Increased iron storage, as measured by circulating ferritin, has been linked to an increased risk of various diseases including diabetes. We examined the association of circulating ferritin with serum adiponectin, leptin, resistin, plasminogen activator inhibitor-1 (PAI-1), and visfatin levels.

Methods

We conducted a cross-sectional study among 429 Japanese employees (284 men and 145 premenopausal women, mean age: 42.5 ± 10.5 years). Serum adipokines were measured using Luminex suspension bead-based multiplexed array, and serum ferritin was determined using a chemiluminescence immunoassay. Multivariable regression analysis was performed to calculate mean concentrations of adipokine according to the tertile of ferritin concentrations with adjustment for potential confounders.

Results

Leptin and visfatin concentrations increased with increasing ferritin concentrations in men after multivariable adjustment of physical activity, smoking, alcohol use, and body mass index (P for trend = 0.02 and 0.01 for leptin and visfatin, respectively). Serum ferritin concentrations were inversely and significantly associated with adiponectin in women (P for trend = 0.01). Resistin and PAI-1 were not appreciably associated with ferritin concentration.

Conclusions

Increased iron storage may be associated with higher circulating concentrations of leptin and visfatin in men and with lower concentrations of adiponectin in women.

Keywords

Iron stores Ferritin Adipokine Adiponectin Leptin Japanese 

Notes

Acknowledgments

We are grateful to the study participants for their cooperation and participation. We also thank Seiko Miyazaki and Yasutaka Horiuchi (Kyushu University); Emi Tanaka, Youko Tsuruda, Misaki Hirose, Meishu Sai, Miho Isayama, Midori Sasaki, Mie Shimomura and Azumi Uehara (Fukuoka Women’s University); Yaeko Nagano (retired nurse); and Akiko Hayashi, Yu Teruyama, Kae Saito, Kayoko Washizuka and Yuho Mizoue (National Center for Global Health and Medicine) for their help in data collection. We extend our thanks to Kazuko Nagase and Dai Suzuki (Department of Metabolic Disorder, Diabetes Research Center, National Center for Global Health and Medicine) for their contributions to measurements of serum adipokines.

Authors’ contribution

TM and KK designed the study; MS, HH, and TM arranged the field survey; KY measured the serum adipokine levels; YK performed the statistical analysis, wrote the manuscript, and had primary responsibility for its final content; and YK, KK, MS, KY, AS, IK, HH, and TM were involved in the revision of the manuscript as well as the final version of the manuscript.

Funding

This study was supported by JSPS KAKENHI Grant Number 21390213, 21790598, 25293146, a grant of National Center for Global Health and Medicine, a grant from the National Institute of Biomedical Innovation, and Practical Research Project for Life-Style related Diseases including Cardiovascular Diseases and Diabetes Mellitus (15ek0210021h0002), Japan Agency for Medical Research and Development.

Compliance with ethical standards

Conflict of interest

None of the authors had any conflict of interest.

References

  1. 1.
    Heath AL, Fairweather-Tait SJ (2003) Health implications of iron overload: the role of diet and genotype. Nutr Rev 61:45–62CrossRefGoogle Scholar
  2. 2.
    Jiang R, Manson JE, Meigs JB, Ma J, Rifai N, Hu FB (2004) Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA 291:711–717CrossRefGoogle Scholar
  3. 3.
    Montonen J, Boeing H, Steffen A, Lehmann R, Fritsche A, Joost HG, Schulze MB, Pischon T (2012) Body iron stores and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetologia 55:2613–2621. doi: 10.1007/s00125-00012-02633-y CrossRefGoogle Scholar
  4. 4.
    Ford ES, Cogswell ME (1999) Diabetes and serum ferritin concentration among U.S. adults. Diabetes Care 22:1978–1983CrossRefGoogle Scholar
  5. 5.
    Sun L, Franco OH, Hu FB, Cai L, Yu Z, Li H, Ye X, Qi Q, Wang J, Pan A, Liu Y, Lin X (2008) Ferritin concentrations, metabolic syndrome, and type 2 diabetes in middle-aged and elderly chinese. J Clin Endocrinol Metab 93:4690–4696. doi: 10.1210/jc.2008-1159 CrossRefGoogle Scholar
  6. 6.
    Kim CH, Kim HK, Bae SJ, Park JY, Lee KU (2011) Association of elevated serum ferritin concentration with insulin resistance and impaired glucose metabolism in Korean men and women. Metabolism 60:414–420. doi: 10.1016/j.metabol.2010.1003.1007 CrossRefGoogle Scholar
  7. 7.
    Zhan Y, Tang Z, Yu J (2014) Serum ferritin, diabetes, diabetes control, and insulin resistance. Acta Diabetol 51:991–998. doi: 10.1007/s00592-00014-00656-00591 CrossRefGoogle Scholar
  8. 8.
    Pham NM, Nanri A, Yi S, Kurotani K, Akter S, Foo LH, Nishi N, Sato M, Hayabuchi H, Mizoue T (2013) Serum ferritin is associated with markers of insulin resistance in Japanese men but not in women. Metabolism 62:561–567. doi: 10.1016/j.metabol.2012.1007.1025 CrossRefGoogle Scholar
  9. 9.
    Qi L, van Dam RM, Rexrode K, Hu FB (2007) Heme iron from diet as a risk factor for coronary heart disease in women with type 2 diabetes. Diabetes Care 30:101–106CrossRefGoogle Scholar
  10. 10.
    Chang YC, Chuang LM (2010) The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. Am J Transl Res 2:316–331Google Scholar
  11. 11.
    Fernandez-Real JM, Lopez-Bermejo A, Ricart W (2002) Cross-talk between iron metabolism and diabetes. Diabetes 51:2348–2354CrossRefGoogle Scholar
  12. 12.
    Ryan TP, Aust SD (1992) The role of iron in oxygen-mediated toxicities. Crit Rev Toxicol 22:119–141CrossRefGoogle Scholar
  13. 13.
    Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202:199–211CrossRefGoogle Scholar
  14. 14.
    Ferroni P, Riondino S, Buonomo O, Palmirotta R, Guadagni F, Roselli M (2015) Type 2 diabetes and breast cancer: the interplay between impaired glucose metabolism and oxidant stress. Oxid Med Cell Longev 183928.: doi:  10.1155/2015/183928
  15. 15.
    Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121:2381–2386CrossRefGoogle Scholar
  16. 16.
    Hajer GR, van Haeften TW, Visseren FL (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29:2959–2971. doi: 10.1093/eurheartj/ehn2387 CrossRefGoogle Scholar
  17. 17.
    Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 9:191–200. doi: 10.5114/aoms.2013.33181 CrossRefGoogle Scholar
  18. 18.
    Mattu HS, Randeva HS (2013) Role of adipokines in cardiovascular disease. J Endocrinol 216:T17–T36. doi: 10.1530/JOE-1512-0232 CrossRefGoogle Scholar
  19. 19.
    Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86:1930–1935CrossRefGoogle Scholar
  20. 20.
    Li S, Shin HJ, Ding EL, van Dam RM (2009) Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 302:179–188. doi: 10.1001/jama.2009.1976 CrossRefGoogle Scholar
  21. 21.
    Zuo H, Shi Z, Yuan B, Dai Y, Wu G, Hussain A (2013) Association between serum leptin concentrations and insulin resistance: a population-based study from China. PLoS One 8:e54615. doi: 10.1371/journal.pone.0054615 CrossRefGoogle Scholar
  22. 22.
    Chen BH, Song Y, Ding EL, Roberts CK, Manson JE, Rifai N, Buring JE, Gaziano JM, Liu S (2009) Circulating levels of resistin and risk of type 2 diabetes in men and women: results from two prospective cohorts. Diabetes Care 32:329–334. doi: 10.2337/dc2308-1625 CrossRefGoogle Scholar
  23. 23.
    Festa A, D’Agostino R Jr, Tracy RP, Haffner SM (2002) Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 51:1131–1137CrossRefGoogle Scholar
  24. 24.
    Wlazlo N, van Greevenbroek MM, Ferreira I, Jansen EH, Feskens EJ, van der Kallen CJ, Schalkwijk CG, Bravenboer B, Stehouwer CD (2013) Iron metabolism is associated with adipocyte insulin resistance and plasma adiponectin: the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) study. Diabetes Care 36:309–315. doi: 10.2337/dc2312-0505 CrossRefGoogle Scholar
  25. 25.
    Ku BJ, Kim SY, Lee TY, Park KS (2009) Serum ferritin is inversely correlated with serum adiponectin level: population-based cross-sectional study. Dis Markers 27:303–310. doi: 10.3233/DMA-2009-0676 CrossRefGoogle Scholar
  26. 26.
    Aso Y, Takebayashi K, Wakabayashi S, Momobayashi A, Sugawara N, Terasawa T, Naruse R, Hara K, Suetsugu M, Morita K, Inukai T (2010) Relation between serum high molecular weight adiponectin and serum ferritin or prohepcidin in patients with type 2 diabetes. Diabetes Res Clin Pract 90:250–255. doi: 10.1016/j.diabres.2010.1009.1008 CrossRefGoogle Scholar
  27. 27.
    Gabrielsen JS, Gao Y, Simcox JA, Huang J, Thorup D, Jones D, Cooksey RC, Gabrielsen D, Adams TD, Hunt SC, Hopkins PN, Cefalu WT, McClain DA (2012) Adipocyte iron regulates adiponectin and insulin sensitivity. J Clin Invest 122:3529–3540. doi: 10.1172/JCI44421 CrossRefGoogle Scholar
  28. 28.
    Forouhi NG, Harding AH, Allison M, Sandhu MS, Welch A, Luben R, Bingham S, Khaw KT, Wareham NJ (2007) Elevated serum ferritin levels predict new-onset type 2 diabetes: results from the EPIC-Norfolk prospective study. Diabetologia 50:949–956CrossRefGoogle Scholar
  29. 29.
    Juanola-Falgarona M, Candido-Fernandez J, Salas-Salvado J, Martinez-Gonzalez MA, Estruch R, Fiol M, Arija-Val V (2013) Association between serum ferritin and osteocalcin as a potential mechanism explaining the iron-induced insulin resistance. PLoS One 8:e76433. doi: 10.71371/journal.pone.0076433 CrossRefGoogle Scholar
  30. 30.
    Fernandez-Real JM, Moreno JM, Chico B, Lopez-Bermejo A, Ricart W (2007) Circulating visfatin is associated with parameters of iron metabolism in subjects with altered glucose tolerance. Diabetes Care 30:616–621CrossRefGoogle Scholar
  31. 31.
    Gao Y, Li Z, Gabrielsen JS, Simcox JA, Lee SH, Jones D, Cooksey B, Stoddard G, Cefalu WT, McClain DA (2015) Adipocyte iron regulates leptin and food intake. J Clin Invest 125:3681–3691. doi: 10.1172/JCI81860 CrossRefGoogle Scholar
  32. 32.
    Kara E, Ahbap E, Sahutoglu T, Sakaci T, Basturk T, Koc Y, Sevinc M, Akgol C, Ucar ZA, Kayalar AO, Bayraktar F, Unsal A (2015) Elevated serum leptin levels are associated with good nutritional status in non-obese chronic hemodialysis patients. Clin Nephrol 83:147–153. doi: 10.5414/CN108409 CrossRefGoogle Scholar
  33. 33.
    Lee HJ, Jang HB, Park JE, Park KH, Kang JH, Park SI, Song J (2014) Relationship between serum levels of body iron parameters and insulin resistance and metabolic syndrome in Korean children. Osong Public Health Res Perspect 5:204–210. doi: 10.1016/j.phrp.2014.1006.1005 CrossRefGoogle Scholar
  34. 34.
    Andreasson AN, Unden AL, Elofsson S, Brismar K (2012) Leptin and adiponectin: distribution and associations with cardiovascular risk factors in men and women of the general population. Am J Hum Biol 24:595–601. doi: 10.1002/ajhb.22279 CrossRefGoogle Scholar
  35. 35.
    Pham NM, Akter S, Kurotani K, Nanri A, Sato M, Hayabuchi H, Yasuda K, Mizoue T (2012) Serum 25-hydroxyvitamin D and markers of insulin resistance in a Japanese working population. Eur J Clin Nutr 66:1323–1328. doi: 10.1038/ejcn.2012.1169 CrossRefGoogle Scholar
  36. 36.
    Kashino I, Nanri A, Kurotani K, Akter S, Yasuda K, Sato M, Hayabuchi H, Mizoue T (2015) Association of dietary patterns with serum adipokines among Japanese: a cross-sectional study. Nutr J 14:58. doi: 10.1186/s12937-12015-10046-12938 CrossRefGoogle Scholar
  37. 37.
    Wu H, Yu Z, Qi Q, Li H, Sun Q, Lin X (2011) Joint analysis of multiple biomarkers for identifying type 2 diabetes in middle-aged and older Chinese: a cross-sectional study. BMJ Open 1:e000191. doi: 10.001136/bmjopen-002011-000191 CrossRefGoogle Scholar
  38. 38.
    Pham NM, Nanri A, Yasuda K, Kurotani K, Kuwahara K, Akter S, Sato M, Hayabuchi H, Mizoue T (2015) Habitual consumption of coffee and green tea in relation to serum adipokines: a cross-sectional study. Eur J Nutr 54:205–214. doi: 10.1007/s00394-00014-00701-00394 CrossRefGoogle Scholar
  39. 39.
    Kobayashi S, Honda S, Murakami K, Sasaki S, Okubo H, Hirota N, Notsu A, Fukui M, Date C (2012) Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J Epidemiol 22:151–159 (Epub 2012 Feb 2018)CrossRefGoogle Scholar
  40. 40.
    Science-and-Technology-Agency (2010) Standard tables of food composition in Japan. In TokyoGoogle Scholar
  41. 41.
    Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O’Brien WL, Bassett DR Jr, Schmitz KH, Emplaincourt PO, Jacobs DR Jr, Leon AS (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32:S498–S504CrossRefGoogle Scholar
  42. 42.
    Rosenbaum M, Nicolson M, Hirsch J, Murphy E, Chu F, Leibel RL (1997) Effects of weight change on plasma leptin concentrations and energy expenditure. J Clin Endocrinol Metab 82:3647–3654Google Scholar
  43. 43.
    Kotani K, Hazama A, Hagimoto A, Saika K, Shigeta M, Katanoda K, Nakamura M (2012) Adiponectin and smoking status: a systematic review. J Atheroscler Thromb 19:787–794 (Epub 2012 May 2017)CrossRefGoogle Scholar
  44. 44.
    Al Mutairi SS, Mojiminiyi OA, Shihab-Eldeen AA, Al Sharafi A, Abdella N (2008) Effect of smoking habit on circulating adipokines in diabetic and non-diabetic subjects. Ann Nutr Metab 52:329–334. doi: 10.1159/000151487 (Epub 000152008 Aug 000151419)CrossRefGoogle Scholar
  45. 45.
    DeMaeyer EM, Dallman P, Gurney L, Hallberg SK, Sood SK, Srikantia SG (1989) Preventing and controlling iron deficiency anaemia through primary health care. A guide for health administrators and programme managers. World Health Organization, GenevaGoogle Scholar
  46. 46.
    Killip S, Bennett JM, Chambers MD (2007) Iron deficiency anemia. Am Fam Physician 75:671–678Google Scholar
  47. 47.
    Stull AJ, Galgani JE, Johnson WD, Cefalu WT (2010) The contribution of race and diabetes status to metabolic flexibility in humans. Metabolism 59:1358–1364. doi: 10.1016/j.metabol.2009.1312.1020 CrossRefGoogle Scholar
  48. 48.
    Iwasaki T, Nakajima A, Yoneda M, Yamada Y, Mukasa K, Fujita K, Fujisawa N, Wada K, Terauchi Y (2005) Serum ferritin is associated with visceral fat area and subcutaneous fat area. Diabetes Care 28:2486–2491CrossRefGoogle Scholar
  49. 49.
    Park KG, Park KS, Kim MJ, Kim HS, Suh YS, Ahn JD, Park KK, Chang YC, Lee IK (2004) Relationship between serum adiponectin and leptin concentrations and body fat distribution. Diabetes Res Clin Pract 63:135–142CrossRefGoogle Scholar
  50. 50.
    Hubler MJ, Peterson KR, Hasty AH (2015) Iron homeostasis: A new job for macrophages in adipose tissue? Trends Endocrinol Metab 26:101–109. doi: 10.1016/j.tem.2014.1012.1005 CrossRefGoogle Scholar
  51. 51.
    Yang DC, Tsay HJ, Lin SY, Chiou SH, Li MJ, Chang TJ, Hung SC (2008) cAMP/PKA regulates osteogenesis, adipogenesis and ratio of RANKL/OPG mRNA expression in mesenchymal stem cells by suppressing leptin. PLoS One 3:e1540. doi: 10.1371/journal.pone.0001540 CrossRefGoogle Scholar
  52. 52.
    Isobe T, Saitoh S, Takagi S, Takeuchi H, Chiba Y, Katoh N, Shimamoto K (2005) Influence of gender, age and renal function on plasma adiponectin level: the Tanno and Sobetsu study. Eur J Endocrinol 153:91–98CrossRefGoogle Scholar
  53. 53.
    Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H, Matsuda M, Kondo H, Furuyama N, Kihara S, Nakamura T, Tochino Y, Funahashi T, Matsuzawa Y (2002) Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes 51:2734–2741CrossRefGoogle Scholar
  54. 54.
    Lee SA, Kallianpur A, Xiang YB, Wen W, Cai Q, Liu D, Fazio S, Linton MF, Zheng W, Shu XO (2007) Intra-individual variation of plasma adipokine levels and utility of single measurement of these biomarkers in population-based studies. Cancer Epidemiol Biomarkers Prev 16:2464–2470CrossRefGoogle Scholar
  55. 55.
    Dale JC, Burritt MF, Zinsmeister AR (2002) Diurnal variation of serum iron, iron-binding capacity, transferrin saturation, and ferritin levels. Am J Clin Pathol 117:802–808CrossRefGoogle Scholar
  56. 56.
    Pilon VA, Howanitz PJ, Howanitz JH, Domres N (1981) Day-to-day variation in serum ferritin concentration in healthy subjects. Clin Chem 27:78–82Google Scholar
  57. 57.
    Skikne BS, Punnonen K, Caldron PH, Bennett MT, Rehu M, Gasior GH, Chamberlin JS, Sullivan LA, Bray KR, Southwick PC (2011) Improved differential diagnosis of anemia of chronic disease and iron deficiency anemia: a prospective multicenter evaluation of soluble transferrin receptor and the sTfR/log ferritin index. Am J Hematol 86:923–927. doi: 10.1002/ajh.22108 (Epub 22011 Aug 22102)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yasumi Kimura
    • 1
  • Kazuki Yasuda
    • 2
  • Kayo Kurotani
    • 3
  • Shamima Akter
    • 3
  • Ikuko Kashino
    • 3
  • Hitomi Hayabuchi
    • 4
  • Masao Sato
    • 5
  • Tetsuya Mizoue
    • 3
  1. 1.Department of Nutritional Sciences, Faculty of Nutritional SciencesNakamura Gakuen UniversityJounan-KuJapan
  2. 2.Department of Metabolic Disorder, Diabetes Research CenterNational Center for Global Health and MedicineTokyoJapan
  3. 3.Department of Epidemiology and Prevention, Center for Clinical SciencesNational Center for Global Health and MedicineTokyoJapan
  4. 4.Graduate School of Nutrition and Health ScienceFukuoka Women’s UniversityFukuokaJapan
  5. 5.Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate SchoolKyushu UniversityFukuokaJapan

Personalised recommendations