European Journal of Nutrition

, Volume 56, Issue 6, pp 2181–2191 | Cite as

Chronic pistachio intake modulates circulating microRNAs related to glucose metabolism and insulin resistance in prediabetic subjects

  • Pablo Hernández-Alonso
  • Simona Giardina
  • Jordi Salas-Salvadó
  • Pierre Arcelin
  • Mònica Bulló
Original Contribution



To assess the effects of a pistachio-enriched diet on the profile of circulating microRNAs (miRNAs) related to glucose metabolism and insulin resistance (IR).


Randomized crossover clinical trial in 49 subjects with prediabetes was performed. Subjects consumed a pistachio-supplemented diet (PD, 50 % carbohydrates, 33 % fat, including 57 g/day of pistachios) and an isocaloric control diet (CD, 55 % carbohydrates and 30 % fat) for 4 months each, separated by a 2-week washout period. The plasma profile of a set of seven predefined miRNAs related to glucose and insulin metabolism was analyzed by quantitative RT-PCR.


After the PD period, subjects have shown significant lower circulating levels of miR-192 and miR-375 compared to CD period, whereas miR-21 nonsignificantly increased after PD compared with CD (47 vs. 2 %, P = 0.092). Interestingly, changes in circulating miR-192 and miR-375 were positively correlated with plasma glucose, insulin and HOMA-IR.


Chronic pistachio consumption positively modulates the expression of some miRNA previously implicated on insulin sensitivity.


Prediabetes Pistachio microRNA Glucose 



We are indebted to the participants in the study and the medical doctors and nursing staff of the SAGESSA group for their collaboration. PH-A is the recipient of a predoctoral fellowship from the Generalitat de Catalunya’s Department of Universities (FI-DGR 2014). We thank Carles Munné (Universitat Rovira i Virgili) for his help as editor assistance.


This study was funded by the American Pistachio Growers (USA) and Paramount Farms. None of the funding sources played a role in the design, collection, analysis, or interpretation of the data or in the decision to submit the manuscript for publication.

Authors’ contribution

MB and JS-S had full access to all the data in the study and take full responsibility for the integrity and accuracy of the data analysis. Study concept and design were performed by MB and JS-S. Acquisition of data was carried out by MB and PH-A. Analysis and interpretation of data were done by MB, PH-A, SG, JS-S and PA. Drafting of the manuscript was performed by PH-A, MB and JS-S. Critical revision of the manuscript for important intellectual content was done by MB and JS-S. Statistical analysis was conducted by MB and PH-A. MB and JS-S obtained funding. All the authors received administrative, technical or material support. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

Author disclosures are as follows: PH-A, SG, PA and MB have nothing to declare. JS-S is a non-paid member of the Scientific Advisory Council of the International Nut Council.

Supplementary material

394_2016_1262_MOESM1_ESM.docx (52 kb)
Supplementary material 1 (DOCX 51 kb)


  1. 1.
    Stumvoll M, Goldstein BJ, van Haeften TW (2010) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333–1346. doi: 10.1016/S0140-6736(05)61032-X CrossRefGoogle Scholar
  2. 2.
    Perreault L, Færch K (2014) Approaching Pre-diabetes. J Diabetes Complicat 28:226–233. doi: 10.1016/j.jdiacomp.2013.10.008 CrossRefGoogle Scholar
  3. 3.
    Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating MicroRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110:483–495. doi: 10.1161/CIRCRESAHA.111.247452 CrossRefGoogle Scholar
  4. 4.
    Honardoost M, Sarookhani MR, Arefian E, Soleimani M (2014) Insulin resistance associated genes and miRNAs. Appl Biochem Biotechnol 174:63–80. doi: 10.1007/s12010-014-1014-z CrossRefGoogle Scholar
  5. 5.
    Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. doi: 10.1038/nature02871 CrossRefGoogle Scholar
  6. 6.
    Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741. doi: 10.1373/clinchem.2010.147405 CrossRefGoogle Scholar
  7. 7.
    Kosaka N, Iguchi H, Yoshioka Y et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452. doi: 10.1074/jbc.M110.107821 CrossRefGoogle Scholar
  8. 8.
    Rottiers V, Näär AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–250. doi: 10.1038/nrm3313 CrossRefGoogle Scholar
  9. 9.
    Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006. doi: 10.1038/cr.2008.282 CrossRefGoogle Scholar
  10. 10.
    Ross SA, Davis CD (2014) The emerging role of microRNAs and nutrition in modulating health and disease. Annu Rev Nutr 34:305–336. doi: 10.1146/annurev-nutr-071813-105729 CrossRefGoogle Scholar
  11. 11.
    Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ et al (2013) One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res 72:69–82. doi: 10.1016/j.phrs.2013.03.011 CrossRefGoogle Scholar
  12. 12.
    Ortega FJ, Cardona-Alvarado MI, Mercader JM et al (2015) Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs. J Nutr Biochem. doi: 10.1016/j.jnutbio.2015.05.001 Google Scholar
  13. 13.
    Hernández-Alonso P, Salas-Salvadó J, Baldrich-Mora M et al (2014) Beneficial effect of pistachio consumption on glucose metabolism, insulin resistance, inflammation, and related metabolic risk markers: a randomized clinical trial. Diabetes Care 37:3098–3105. doi: 10.2337/dc14-1431 CrossRefGoogle Scholar
  14. 14.
    Roberts TC, Coenen-Stass AML, Wood MJA (2014) Assessment of RT-qPCR normalization strategies for accurate quantification of extracellular microRNAs in murine serum. PLoS One 9:e89237. doi: 10.1371/journal.pone.0089237 CrossRefGoogle Scholar
  15. 15.
    Ortega FJ, Mercader JM, Moreno-Navarrete JM et al (2014) Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37:1375–1383. doi: 10.2337/dc13-1847 CrossRefGoogle Scholar
  16. 16.
    Guay C, Regazzi R (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9:513–521. doi: 10.1038/nrendo.2013.86 CrossRefGoogle Scholar
  17. 17.
    Chakraborty C, Doss C, Bandyopadhyay S, Agoramoorthy G (2014) Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip Rev RNA 5(5):697–712. doi: 10.1002/wrna.1240 Google Scholar
  18. 18.
    Lu M, Zhang Q, Deng M et al (2008) An analysis of human microRNA and disease associations. PLoS One 3:e3420. doi: 10.1371/journal.pone.0003420 CrossRefGoogle Scholar
  19. 19.
    Jiang Q, Wang Y, Hao Y et al (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–D104. doi: 10.1093/nar/gkn714 CrossRefGoogle Scholar
  20. 20.
    Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157. doi: 10.1093/nar/gkq1027 CrossRefGoogle Scholar
  21. 21.
    Papadopoulos GL, Alexiou P, Maragkakis M et al (2009) DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 25:1991–1993. doi: 10.1093/bioinformatics/btp299 CrossRefGoogle Scholar
  22. 22.
    Zampetaki A, Kiechl S, Drozdov I et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817. doi: 10.1161/CIRCRESAHA.110.226357 CrossRefGoogle Scholar
  23. 23.
    Zhu H, Leung SW (2015) Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 58:900–911. doi: 10.1007/s00125-015-3510-2 CrossRefGoogle Scholar
  24. 24.
    Milenkovic D, Deval C, Gouranton E et al (2012) Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols. PLoS One 7:e29837. doi: 10.1371/journal.pone.0029837 CrossRefGoogle Scholar
  25. 25.
    Druz A, Chen Y-C, Guha R et al (2013) Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines. RNA Biol 10:287–300. doi: 10.4161/rna.23339 CrossRefGoogle Scholar
  26. 26.
    Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86:410–420. doi: 10.1093/cvr/cvq010 CrossRefGoogle Scholar
  27. 27.
    Ling H-Y, Hu B, Hu X-B et al (2012) MiRNA-21 reverses high glucose and high insulin induced insulin resistance in 3T3-L1 adipocytes through targeting phosphatase and tensin homologue. Exp Clin Endocrinol Diabetes 120:553–559. doi: 10.1055/s-0032-1311644 CrossRefGoogle Scholar
  28. 28.
    Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA (2011) miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 31:3182–3194. doi: 10.1128/MCB.01433-10 CrossRefGoogle Scholar
  29. 29.
    Zhang X, Gong X, Han S, Zhang Y (2014) MiR-29b protects dorsal root ganglia neurons from diabetic rat. Cell Biochem Biophys. doi: 10.1007/s12013-014-0029-y Google Scholar
  30. 30.
    Oleszczak B, Szablewski L, Pliszka M (2012) The effect of hyperglycemia and hypoglycemia on glucose transport and expression of glucose transporters in human lymphocytes B and T: an in vitro study. Diabetes Res Clin Pract 96:170–178. doi: 10.1016/j.diabres.2011.12.012 CrossRefGoogle Scholar
  31. 31.
    Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230. doi: 10.1038/nature03076 CrossRefGoogle Scholar
  32. 32.
    Poy MN, Hausser J, Trajkovski M et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 106:5813–5818. doi: 10.1073/pnas.0810550106 CrossRefGoogle Scholar
  33. 33.
    Higuchi C, Nakatsuka A, Eguchi J et al (2015) Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism 64:489–497. doi: 10.1016/j.metabol.2014.12.003 CrossRefGoogle Scholar
  34. 34.
    Kong L, Zhu J, Han W et al (2011) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48:61–69. doi: 10.1007/s00592-010-0226-0 CrossRefGoogle Scholar
  35. 35.
    Erener S, Mojibian M, Fox JK et al (2013) Circulating miR-375 as a biomarker of b-cell death and diabetes in mice. Endocrinology 154:603–608. doi: 10.1210/en.2012-1744 CrossRefGoogle Scholar
  36. 36.
    Zampetaki A, Mayr M (2012) MicroRNAs in vascular and metabolic disease. Circ Res 110:508–522. doi: 10.1161/CIRCRESAHA.111.247445 CrossRefGoogle Scholar
  37. 37.
    Meng S, Cao JT, Zhang B et al (2012) Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 53:64–72. doi: 10.1016/j.yjmcc.2012.04.003 CrossRefGoogle Scholar
  38. 38.
    Mocharla P, Briand S, Giannotti G et al (2013) AngiomiR-126 expression and secretion from circulating CD34 + and CD14 + PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood 121:226–236. doi: 10.1182/blood-2012-01-407106 CrossRefGoogle Scholar
  39. 39.
    Zhang T, Lv C, Li L et al (2013) Plasma miR-126 is a potential biomarker for early prediction of type 2 diabetes mellitus in susceptible individuals. Biomed Res Int 2013:761617. doi: 10.1155/2013/761617 Google Scholar
  40. 40.
    Liu Y, Gao G, Yang C et al (2014) The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int J Mol Sci 15:10567–10577. doi: 10.3390/ijms150610567 CrossRefGoogle Scholar
  41. 41.
    Párrizas M, Brugnara L, Esteban Y et al (2015) Circulating miR-192 and miR-193b are markers of prediabetes and are modulated by an exercise intervention. J Clin Endocrinol Metab 100:E407–E415. doi: 10.1210/jc.2014-2574 CrossRefGoogle Scholar
  42. 42.
    Gurzov EN, Eizirik DL (2011) Bcl-2 proteins in diabetes: mitochondrial pathways of β-cell death and dysfunction. Trends Cell Biol 21:424–431. doi: 10.1016/j.tcb.2011.03.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pablo Hernández-Alonso
    • 1
    • 2
  • Simona Giardina
    • 1
  • Jordi Salas-Salvadó
    • 1
    • 2
  • Pierre Arcelin
    • 3
  • Mònica Bulló
    • 1
    • 2
  1. 1.Human Nutrition Unit, Biochemistry and Biotechnology Department, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, IISPVUniversitat Rovira i VirgiliReusSpain
  2. 2.CIBERobn Physiopathology of Obesity and NutritionInstituto de Salud Carlos IIIMadridSpain
  3. 3.ABS Reus V. Centre d’Assistència Primària Marià FortunySAGESSAReusSpain

Personalised recommendations