European Journal of Nutrition

, Volume 56, Issue 6, pp 2181–2191 | Cite as

Chronic pistachio intake modulates circulating microRNAs related to glucose metabolism and insulin resistance in prediabetic subjects

Original Contribution



To assess the effects of a pistachio-enriched diet on the profile of circulating microRNAs (miRNAs) related to glucose metabolism and insulin resistance (IR).


Randomized crossover clinical trial in 49 subjects with prediabetes was performed. Subjects consumed a pistachio-supplemented diet (PD, 50 % carbohydrates, 33 % fat, including 57 g/day of pistachios) and an isocaloric control diet (CD, 55 % carbohydrates and 30 % fat) for 4 months each, separated by a 2-week washout period. The plasma profile of a set of seven predefined miRNAs related to glucose and insulin metabolism was analyzed by quantitative RT-PCR.


After the PD period, subjects have shown significant lower circulating levels of miR-192 and miR-375 compared to CD period, whereas miR-21 nonsignificantly increased after PD compared with CD (47 vs. 2 %, P = 0.092). Interestingly, changes in circulating miR-192 and miR-375 were positively correlated with plasma glucose, insulin and HOMA-IR.


Chronic pistachio consumption positively modulates the expression of some miRNA previously implicated on insulin sensitivity.


Prediabetes Pistachio microRNA Glucose 

Supplementary material

394_2016_1262_MOESM1_ESM.docx (52 kb)
Supplementary material 1 (DOCX 51 kb)


  1. 1.
    Stumvoll M, Goldstein BJ, van Haeften TW (2010) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333–1346. doi:10.1016/S0140-6736(05)61032-X CrossRefGoogle Scholar
  2. 2.
    Perreault L, Færch K (2014) Approaching Pre-diabetes. J Diabetes Complicat 28:226–233. doi:10.1016/j.jdiacomp.2013.10.008 CrossRefGoogle Scholar
  3. 3.
    Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating MicroRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110:483–495. doi:10.1161/CIRCRESAHA.111.247452 CrossRefGoogle Scholar
  4. 4.
    Honardoost M, Sarookhani MR, Arefian E, Soleimani M (2014) Insulin resistance associated genes and miRNAs. Appl Biochem Biotechnol 174:63–80. doi:10.1007/s12010-014-1014-z CrossRefGoogle Scholar
  5. 5.
    Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. doi:10.1038/nature02871 CrossRefGoogle Scholar
  6. 6.
    Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741. doi:10.1373/clinchem.2010.147405 CrossRefGoogle Scholar
  7. 7.
    Kosaka N, Iguchi H, Yoshioka Y et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452. doi:10.1074/jbc.M110.107821 CrossRefGoogle Scholar
  8. 8.
    Rottiers V, Näär AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–250. doi:10.1038/nrm3313 CrossRefGoogle Scholar
  9. 9.
    Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006. doi:10.1038/cr.2008.282 CrossRefGoogle Scholar
  10. 10.
    Ross SA, Davis CD (2014) The emerging role of microRNAs and nutrition in modulating health and disease. Annu Rev Nutr 34:305–336. doi:10.1146/annurev-nutr-071813-105729 CrossRefGoogle Scholar
  11. 11.
    Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ et al (2013) One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res 72:69–82. doi:10.1016/j.phrs.2013.03.011 CrossRefGoogle Scholar
  12. 12.
    Ortega FJ, Cardona-Alvarado MI, Mercader JM et al (2015) Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs. J Nutr Biochem. doi:10.1016/j.jnutbio.2015.05.001 Google Scholar
  13. 13.
    Hernández-Alonso P, Salas-Salvadó J, Baldrich-Mora M et al (2014) Beneficial effect of pistachio consumption on glucose metabolism, insulin resistance, inflammation, and related metabolic risk markers: a randomized clinical trial. Diabetes Care 37:3098–3105. doi:10.2337/dc14-1431 CrossRefGoogle Scholar
  14. 14.
    Roberts TC, Coenen-Stass AML, Wood MJA (2014) Assessment of RT-qPCR normalization strategies for accurate quantification of extracellular microRNAs in murine serum. PLoS One 9:e89237. doi:10.1371/journal.pone.0089237 CrossRefGoogle Scholar
  15. 15.
    Ortega FJ, Mercader JM, Moreno-Navarrete JM et al (2014) Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37:1375–1383. doi:10.2337/dc13-1847 CrossRefGoogle Scholar
  16. 16.
    Guay C, Regazzi R (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9:513–521. doi:10.1038/nrendo.2013.86 CrossRefGoogle Scholar
  17. 17.
    Chakraborty C, Doss C, Bandyopadhyay S, Agoramoorthy G (2014) Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip Rev RNA 5(5):697–712. doi:10.1002/wrna.1240 Google Scholar
  18. 18.
    Lu M, Zhang Q, Deng M et al (2008) An analysis of human microRNA and disease associations. PLoS One 3:e3420. doi:10.1371/journal.pone.0003420 CrossRefGoogle Scholar
  19. 19.
    Jiang Q, Wang Y, Hao Y et al (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–D104. doi:10.1093/nar/gkn714 CrossRefGoogle Scholar
  20. 20.
    Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157. doi:10.1093/nar/gkq1027 CrossRefGoogle Scholar
  21. 21.
    Papadopoulos GL, Alexiou P, Maragkakis M et al (2009) DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 25:1991–1993. doi:10.1093/bioinformatics/btp299 CrossRefGoogle Scholar
  22. 22.
    Zampetaki A, Kiechl S, Drozdov I et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817. doi:10.1161/CIRCRESAHA.110.226357 CrossRefGoogle Scholar
  23. 23.
    Zhu H, Leung SW (2015) Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 58:900–911. doi:10.1007/s00125-015-3510-2 CrossRefGoogle Scholar
  24. 24.
    Milenkovic D, Deval C, Gouranton E et al (2012) Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols. PLoS One 7:e29837. doi:10.1371/journal.pone.0029837 CrossRefGoogle Scholar
  25. 25.
    Druz A, Chen Y-C, Guha R et al (2013) Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines. RNA Biol 10:287–300. doi:10.4161/rna.23339 CrossRefGoogle Scholar
  26. 26.
    Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86:410–420. doi:10.1093/cvr/cvq010 CrossRefGoogle Scholar
  27. 27.
    Ling H-Y, Hu B, Hu X-B et al (2012) MiRNA-21 reverses high glucose and high insulin induced insulin resistance in 3T3-L1 adipocytes through targeting phosphatase and tensin homologue. Exp Clin Endocrinol Diabetes 120:553–559. doi:10.1055/s-0032-1311644 CrossRefGoogle Scholar
  28. 28.
    Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA (2011) miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 31:3182–3194. doi:10.1128/MCB.01433-10 CrossRefGoogle Scholar
  29. 29.
    Zhang X, Gong X, Han S, Zhang Y (2014) MiR-29b protects dorsal root ganglia neurons from diabetic rat. Cell Biochem Biophys. doi:10.1007/s12013-014-0029-y Google Scholar
  30. 30.
    Oleszczak B, Szablewski L, Pliszka M (2012) The effect of hyperglycemia and hypoglycemia on glucose transport and expression of glucose transporters in human lymphocytes B and T: an in vitro study. Diabetes Res Clin Pract 96:170–178. doi:10.1016/j.diabres.2011.12.012 CrossRefGoogle Scholar
  31. 31.
    Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230. doi:10.1038/nature03076 CrossRefGoogle Scholar
  32. 32.
    Poy MN, Hausser J, Trajkovski M et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 106:5813–5818. doi:10.1073/pnas.0810550106 CrossRefGoogle Scholar
  33. 33.
    Higuchi C, Nakatsuka A, Eguchi J et al (2015) Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism 64:489–497. doi:10.1016/j.metabol.2014.12.003 CrossRefGoogle Scholar
  34. 34.
    Kong L, Zhu J, Han W et al (2011) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48:61–69. doi:10.1007/s00592-010-0226-0 CrossRefGoogle Scholar
  35. 35.
    Erener S, Mojibian M, Fox JK et al (2013) Circulating miR-375 as a biomarker of b-cell death and diabetes in mice. Endocrinology 154:603–608. doi:10.1210/en.2012-1744 CrossRefGoogle Scholar
  36. 36.
    Zampetaki A, Mayr M (2012) MicroRNAs in vascular and metabolic disease. Circ Res 110:508–522. doi:10.1161/CIRCRESAHA.111.247445 CrossRefGoogle Scholar
  37. 37.
    Meng S, Cao JT, Zhang B et al (2012) Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 53:64–72. doi:10.1016/j.yjmcc.2012.04.003 CrossRefGoogle Scholar
  38. 38.
    Mocharla P, Briand S, Giannotti G et al (2013) AngiomiR-126 expression and secretion from circulating CD34 + and CD14 + PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood 121:226–236. doi:10.1182/blood-2012-01-407106 CrossRefGoogle Scholar
  39. 39.
    Zhang T, Lv C, Li L et al (2013) Plasma miR-126 is a potential biomarker for early prediction of type 2 diabetes mellitus in susceptible individuals. Biomed Res Int 2013:761617. doi:10.1155/2013/761617 Google Scholar
  40. 40.
    Liu Y, Gao G, Yang C et al (2014) The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int J Mol Sci 15:10567–10577. doi:10.3390/ijms150610567 CrossRefGoogle Scholar
  41. 41.
    Párrizas M, Brugnara L, Esteban Y et al (2015) Circulating miR-192 and miR-193b are markers of prediabetes and are modulated by an exercise intervention. J Clin Endocrinol Metab 100:E407–E415. doi:10.1210/jc.2014-2574 CrossRefGoogle Scholar
  42. 42.
    Gurzov EN, Eizirik DL (2011) Bcl-2 proteins in diabetes: mitochondrial pathways of β-cell death and dysfunction. Trends Cell Biol 21:424–431. doi:10.1016/j.tcb.2011.03.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pablo Hernández-Alonso
    • 1
    • 2
  • Simona Giardina
    • 1
  • Jordi Salas-Salvadó
    • 1
    • 2
  • Pierre Arcelin
    • 3
  • Mònica Bulló
    • 1
    • 2
  1. 1.Human Nutrition Unit, Biochemistry and Biotechnology Department, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, IISPVUniversitat Rovira i VirgiliReusSpain
  2. 2.CIBERobn Physiopathology of Obesity and NutritionInstituto de Salud Carlos IIIMadridSpain
  3. 3.ABS Reus V. Centre d’Assistència Primària Marià FortunySAGESSAReusSpain

Personalised recommendations