European Journal of Nutrition

, Volume 56, Issue 5, pp 1859–1869 | Cite as

Zinc supplementation induces CD4+CD25+Foxp3+ antigen-specific regulatory T cells and suppresses IFN-γ production by upregulation of Foxp3 and KLF-10 and downregulation of IRF-1

Original Contribution

Abstract

Purpose

The essential trace element zinc plays a fundamental role in immune function and regulation since its deficiency is associated with autoimmunity, allergies, and transplant rejection. Thus, we investigated the influence of zinc supplementation on the Th1-driven alloreaction in mixed lymphocyte cultures (MLC), on generation of antigen-specific T cells, and analyzed underlying molecular mechanisms.

Methods

Cell proliferation and pro-inflammatory cytokine production were monitored by [3H]-thymidine proliferation assay and ELISA, respectively. Analysis of surface and intracellular T cell marker was performed by flow cytometry. Western blotting and mRNA analysis were used for Foxp3, KLF-10, and IRF-1 expression.

Results

Zinc supplementation on antigen-specific T cells in physiological doses (50 µM) provokes a significant amelioration of cell proliferation and pro-inflammatory cytokine production after reactivation compared to untreated controls. Zinc administration on MLC results in an increased induction and stabilization of CD4+CD25+Foxp3+ and CD4+CD25+CTLA-4+ T cells (p < 0.05). The effect is based on zinc-induced upregulation of Foxp3 and KLF-10 and downregulation of IRF-1. However, in resting lymphocytes zinc increases IRF-1.

Conclusion

In summary, zinc is capable of ameliorating the allogeneic immune reaction by enhancement of antigen-specific iTreg cells due to modulation of essential molecular targets: Foxp3, KLF-10, and IRF-1. Thus, zinc can be seen as an auspicious tool for inducing tolerance in adverse immune reactions.

Keywords

Zinc Regulatory T cells Mixed lymphocyte culture (MLC) Foxp3 IRF-1 KLF-10 

References

  1. 1.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787. doi:10.1016/j.cell.2008.05.009 CrossRefGoogle Scholar
  2. 2.
    Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562. doi:10.1146/annurev.immunol.21.120601.141122 CrossRefGoogle Scholar
  3. 3.
    Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198(12):1875–1886. doi:10.1084/jem.20030152 CrossRefGoogle Scholar
  4. 4.
    Zheng SG, Wang JH, Stohl W, Kim KS, Gray JD, Horwitz DA (2006) TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J Immunol 176(6):3321–3329CrossRefGoogle Scholar
  5. 5.
    Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF (2004) Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25 T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172(9):5149–5153CrossRefGoogle Scholar
  6. 6.
    Zhao C, Shi G, Vistica BP, Hinshaw SJ, Wandu WS, Tan C, Zhang M, Gery I (2014) Induced regulatory T-cells (iTregs) generated by activation with anti-CD3/CD28 antibodies differ from those generated by the physiological-like activation with antigen/APC. Cell Immunol 290(2):179–184. doi:10.1016/j.cellimm.2014.06.004 CrossRefGoogle Scholar
  7. 7.
    Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, Masteller EL, McDevitt H, Bonyhadi M, Bluestone JA (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199(11):1455–1465. doi:10.1084/jem.20040139 CrossRefGoogle Scholar
  8. 8.
    DiPaolo RJ, Brinster C, Davidson TS, Andersson J, Glass D, Shevach EM (2007) Autoantigen-specific TGFbeta-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J Immunol 179(7):4685–4693CrossRefGoogle Scholar
  9. 9.
    Huter EN, Stummvoll GH, DiPaolo RJ, Glass DD, Shevach EM (2008) Cutting edge: antigen-specific TGF beta-induced regulatory T cells suppress Th17-mediated autoimmune disease. J Immunol 181(12):8209–8213CrossRefGoogle Scholar
  10. 10.
    Fragale A, Gabriele L, Stellacci E, Borghi P, Perrotti E, Ilari R, Lanciotti A, Remoli AL, Venditti M, Belardelli F, Battistini A (2008) IFN regulatory factor-1 negatively regulates CD4+CD25+ regulatory T cell differentiation by repressing Foxp3 expression. J Immunol 181(3):1673–1682CrossRefGoogle Scholar
  11. 11.
    Cao Z, Wara AK, Icli B, Sun X, Packard RR, Esen F, Stapleton CJ, Subramaniam M, Kretschmer K, Apostolou I, von Boehmer H, Hansson GK, Spelsberg TC, Libby P, Feinberg MW (2009) Kruppel-like factor KLF10 targets transforming growth factor-beta1 to regulate CD4(+)CD25(−) T cells and T regulatory cells. J Biol Chem 284(37):24914–24924. doi:10.1074/jbc.M109.000059 CrossRefGoogle Scholar
  12. 12.
    Rosenkranz E, Metz CH, Maywald M, Hilgers RD, Wessels I, Senff T, Haase H, Jager M, Ott M, Aspinall R, Plumakers B, Rink L (2015) Zinc supplementation induces regulatory T cells by inhibition of Sirt-1 deacetylase in mixed lymphocyte cultures. Mol Nutr Food Res. doi:10.1002/mnfr.201500524 Google Scholar
  13. 13.
    Kown MH, van der Steenhoven TJ, Jahncke CL, Mari C, Lijkwan MA, Koransky ML, Blankenberg FG, Strauss HW, Robbins RC (2002) Zinc chloride-mediated reduction of apoptosis as an adjunct immunosuppressive modality in cardiac transplantation. J Heart Lung Transplant 21(3):360–365CrossRefGoogle Scholar
  14. 14.
    Faber C, Gabriel P, Ibs KH, Rink L (2004) Zinc in pharmacological doses suppresses allogeneic reaction without affecting the antigenic response. Bone Marrow Transplant 33(12):1241–1246. doi:10.1038/sj.bmt.1704509 CrossRefGoogle Scholar
  15. 15.
    Kitabayashi C, Fukada T, Kanamoto M, Ohashi W, Hojyo S, Atsumi T, Ueda N, Azuma I, Hirota H, Murakami M, Hirano T (2010) Zinc suppresses Th17 development via inhibition of STAT3 activation. Int Immunol 22(5):375–386. doi:10.1093/intimm/dxq017 CrossRefGoogle Scholar
  16. 16.
    Stoye D, Schubert C, Goihl A, Guttek K, Reinhold A, Brocke S, Grungreiff K, Reinhold D (2012) Zinc aspartate suppresses T cell activation in vitro and relapsing experimental autoimmune encephalomyelitis in SJL/J mice. Biometals 25(3):529–539. doi:10.1007/s10534-012-9532-z CrossRefGoogle Scholar
  17. 17.
    Rosenkranz E, Hilgers RD, Uciechowski P, Petersen A, Plumakers B, Rink L (2015) Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects. Eur J Nutr. doi:10.1007/s00394-015-1100-1 Google Scholar
  18. 18.
    Rosenkranz E, Maywald M, Hilgers RD, Brieger A, Clarner T, Kipp M, Plümäkers B, Meyer S, Schwerdtle T, Rink L (2016) Induction of regulatory T cells in Th1-/Th17-driven experimental autoimmune encephalomyelitis by zinc administration. J Nutr Biochem 29:116–123. doi:10.1016/j.jnutbio.2015.11.010 CrossRefGoogle Scholar
  19. 19.
    Niedermeier W, Griggs JH (1971) Trace metal composition of synovial fluid and blood serum of patients with rheumatoid arthritis. J Chronic Dis 23(8):527–536CrossRefGoogle Scholar
  20. 20.
    Ibs KH, Rink L (2003) Zinc-altered immune function. J Nutr 133(5 Suppl 1):1452S–1456SGoogle Scholar
  21. 21.
    Walker CF, Black RE (2004) Zinc and the risk for infectious disease. Annu Rev Nutr 24:255–275. doi:10.1146/annurev.nutr.23.011702.073054 CrossRefGoogle Scholar
  22. 22.
    Kim PW, Sun ZY, Blacklow SC, Wagner G, Eck MJ (2003) A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science 301(5640):1725–1728. doi:10.1126/science.1085643 CrossRefGoogle Scholar
  23. 23.
    Haase H, Rink L (2009) Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 29:133–152. doi:10.1146/annurev-nutr-080508-141119 CrossRefGoogle Scholar
  24. 24.
    Honscheid A, Rink L, Haase H (2009) T-lymphocytes: a target for stimulatory and inhibitory effects of zinc ions. Endocr Metab Immune Disord Drug Targets 9(2):132–144CrossRefGoogle Scholar
  25. 25.
    Uciechowski P, Kahmann L, Plumakers B, Malavolta M, Mocchegiani E, Dedoussis G, Herbein G, Jajte J, Fulop T, Rink L (2008) TH1 and TH2 cell polarization increases with aging and is modulated by zinc supplementation. Exp Gerontol 43(5):493–498. doi:10.1016/j.exger.2007.11.006 CrossRefGoogle Scholar
  26. 26.
    Prasad AS (2000) Effects of zinc deficiency on Th1 and Th2 cytokine shifts. J Infect Dis 182(Suppl 1):S62–S68. doi:10.1086/315916 CrossRefGoogle Scholar
  27. 27.
    Kahmann L, Uciechowski P, Warmuth S, Malavolta M, Mocchegiani E, Rink L (2006) Effect of improved zinc status on T helper cell activation and TH1/TH2 ratio in healthy elderly individuals. Biogerontology 7(5–6):429–435. doi:10.1007/s10522-006-9058-2 CrossRefGoogle Scholar
  28. 28.
    Wellinghausen N, Rink L (1998) The significance of zinc for leukocyte biology. J Leukoc Biol 64(5):571–577Google Scholar
  29. 29.
    Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14(3–4):331–341CrossRefGoogle Scholar
  30. 30.
    Varin A, Larbi A, Dedoussis GV, Kanoni S, Jajte J, Rink L, Monti D, Malavolta M, Marcellini F, Mocchegiani E, Herbein G, Fulop T Jr (2008) In vitro and in vivo effects of zinc on cytokine signalling in human T cells. Exp Gerontol 43(5):472–482. doi:10.1016/j.exger.2007.12.008 CrossRefGoogle Scholar
  31. 31.
    Kaltenberg J, Plum LM, Ober-Blobaum JL, Honscheid A, Rink L, Haase H (2010) Zinc signals promote IL-2-dependent proliferation of T cells. Eur J Immunol 40(5):1496–1503. doi:10.1002/eji.200939574 CrossRefGoogle Scholar
  32. 32.
    King LE, Frentzel JW, Mann JJ, Fraker PJ (2005) Chronic zinc deficiency in mice disrupted T cell lymphopoiesis and erythropoiesis while B cell lymphopoiesis and myelopoiesis were maintained. J Am Coll Nutr 24(6):494–502CrossRefGoogle Scholar
  33. 33.
    Campo CA, Wellinghausen N, Faber C, Fischer A, Rink L (2001) Zinc inhibits the mixed lymphocyte culture. Biol Trace Elem Res 79(1):15–22. doi:10.1385/bter:79:1:15 CrossRefGoogle Scholar
  34. 34.
    Dickinson AM, Sviland L, Hamilton PJ, Usher P, Taylor P, Jackson G, Dunn J, Proctor SJ (1994) Cytokine involvement in predicting clinical graft-versus-host disease in allogeneic bone marrow transplant recipients. Bone Marrow Transplant 13(1):65–70Google Scholar
  35. 35.
    Danzer SG, Rink L (1996) Cytokines in mixed lymphocyte culture as a prospective parameter for transplantation. Med Klin (Munich) 91(8):494–500Google Scholar
  36. 36.
    van der Meer A, Wissink WM, Schattenberg AV, Joosten I (1999) Interferon-gamma-based mixed lymphocyte culture as a selection tool for allogeneic bone marrow donors other than identical siblings. Br J Haematol 105(2):340–348CrossRefGoogle Scholar
  37. 37.
    Kown MH, Van der Steenhoven T, Blankenberg FG, Hoyt G, Berry GJ, Tait JF, Strauss HW, Robbins RC (2000) Zinc-mediated reduction of apoptosis in cardiac allografts. Circulation 102(19 Suppl 3):III228–III232Google Scholar
  38. 38.
    Okamoto T, Kuroki T, Adachi T, Ono S, Hayashi T, Tajima Y, Eguchi S, Kanematsu T (2011) Effect of zinc on early graft failure following intraportal islet transplantation in rat recipients. Ann Transplant 16(3):114–120CrossRefGoogle Scholar
  39. 39.
    Plum LM, Brieger A, Engelhardt G, Hebel S, Nessel A, Arlt M, Kaltenberg J, Schwaneberg U, Huber M, Rink L, Haase H (2014) PTEN-inhibition by zinc ions augments interleukin-2-mediated Akt phosphorylation. Metallomics 6(7):1277–1287. doi:10.1039/c3mt00197k CrossRefGoogle Scholar
  40. 40.
    Daaboul D, Rosenkranz E, Uciechowski P, Rink L (2012) Repletion of zinc in zinc-deficient cells strongly up-regulates IL-1beta-induced IL-2 production in T-cells. Metallomics 4(10):1088–1097. doi:10.1039/c2mt20118f CrossRefGoogle Scholar
  41. 41.
    Huber S, Schrader J, Fritz G, Presser K, Schmitt S, Waisman A, Luth S, Blessing M, Herkel J, Schramm C (2008) P38 MAP kinase signaling is required for the conversion of CD4+CD25 T cells into iTreg. PLoS One 3(10):e3302. doi:10.1371/journal.pone.0003302 CrossRefGoogle Scholar
  42. 42.
    Horwitz DA, Zheng SG, Wang J, Gray JD (2008) Critical role of IL-2 and TGF-beta in generation, function and stabilization of Foxp3+CD4+ Treg. Eur J Immunol 38(4):912–915. doi:10.1002/eji.200738109 CrossRefGoogle Scholar
  43. 43.
    Sakaguchi S, Vignali DA, Rudensky AY, Niec RE, Waldmann H (2013) The plasticity and stability of regulatory T cells. Nat Rev Immunol 13(6):461–467. doi:10.1038/nri3464 CrossRefGoogle Scholar
  44. 44.
    Zheng SG, Meng L, Wang JH, Watanabe M, Barr ML, Cramer DV, Gray JD, Horwitz DA (2006) Transfer of regulatory T cells generated ex vivo modifies graft rejection through induction of tolerogenic CD4+CD25+ cells in the recipient. Int Immunol 18(2):279–289. doi:10.1093/intimm/dxh368 CrossRefGoogle Scholar
  45. 45.
    Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM (2004) CD25+CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199(11):1467–1477. doi:10.1084/jem.20040180 CrossRefGoogle Scholar
  46. 46.
    Galon J, Sudarshan C, Ito S, Finbloom D, O’Shea JJ (1999) IL-12 induces IFN regulating factor-1 (IRF-1) gene expression in human NK and T cells. J Immunol 162(12):7256–7262Google Scholar
  47. 47.
    Bao B, Prasad AS, Beck FW, Godmere M (2003) Zinc modulates mRNA levels of cytokines. Am J Physiol Endocrinol Metab 285(5):E1095–E1102. doi:10.1152/ajpendo.00545.2002 CrossRefGoogle Scholar
  48. 48.
    Beck FW, Prasad AS, Kaplan J, Fitzgerald JT, Brewer GJ (1997) Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans. Am J Physiol 272(6 Pt 1):E1002–E1007Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Faculty of Medicine, Institute of ImmunologyRWTH Aachen University, University HospitalAachenGermany

Personalised recommendations