European Journal of Nutrition

, Volume 56, Issue 4, pp 1509–1521 | Cite as

A meta-analysis of efficacy of Morus alba Linn. to improve blood glucose and lipid profile

  • Wiraphol PhimarnEmail author
  • Kittisak Wichaiyo
  • Khuntawan Silpsavikul
  • Bunleu Sungthong
  • Kritsanee Saramunee
Original Contribution



The previous studies have reported the Morus alba may improve blood glucose and lipid profile. The evidence from these studies is not consistent. This meta-analysis was to evaluate efficacy of products derived from M. alba on blood glucose and lipid levels.


Literature was reviewed via international database (PubMed, PubMed Central, ScienceDirect, and SciSearch) and Thai databases. Thirteen RCTs with high quality, assessed by Jadad score, were included.


M. alba expressed a significant reduction in postprandial glucose (PPG) at 30 min (MD −1.04, 95 % CI −1.36, −0.73), 60 min (MD −0.87, 95 % CI −1.27, −0.48) and 90 min (MD −0.55, 95 % CI −0.87, −0.22). The difference was not found in the levels of other glycaemic (FBS, HbA1C, or HOMA-IR) and lipidaemic (TC, TG, LDL, or HDL) markers. Serious adverse effects were found neither in the control nor in the group received M. alba.


Products derived from M. alba can effectively contribute to the reduction in PPG levels, but large-scale RCTs would be informative.


Mulberry (Morus albaDiabetes mellitus Dyslipidaemia Blood glucose Blood lipid 



Mean difference


Confidence interval


Postprandial glucose


Fasting blood sugar


Hemoglobin A1C


Homeostatic model assessment insulin resistance


Total cholesterol




Low density lipoprotein cholesterol


High-density lipoprotein cholesterol


Preferred reporting items for systematic reviews and meta-analyses


Standard error


Randomized control trial



The authors wish to thank Dr. Pamela Voulalas, School of Pharmacy, University of Maryland for language editorial assistance.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

394_2016_1197_MOESM1_ESM.docx (270 kb)
Supplementary material 1 (DOCX 269 kb)


  1. 1.
    Falko M (2011) Balancing efficacy and tolerability issues with Statin Therapy—Considerations for the use of Pitavastatin in special patient populations. US Endocrinol 7:30–39. doi: 10.17925/USE.2011.07.01.30 CrossRefGoogle Scholar
  2. 2.
    WHO (2015) Cardiovascular diseases (CVDs), Fact Sheet, 2009. Accessed August 15, 2015
  3. 3.
    Musunuru K (2010) Atherogenic dyslipidemia: cardiovascular risk and dietary intervention. Lipids 45:907–914CrossRefGoogle Scholar
  4. 4.
    Assmann G, Cullen P, Schulte H (2010) Non-LDL-related dyslipidemia and coronary risk: a case-control study. Diab Vasc Dis Res 7:204–212CrossRefGoogle Scholar
  5. 5.
    Davidson JA, Parkin CG (2009) Is hyperglycemia a causal factor in cardiovascular disease? Diab Care 32:s331–s333CrossRefGoogle Scholar
  6. 6.
    Chapman MJ, Ginsberg HN, Amarenco P, Andreotti F, Borén J, Catapano AL, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, Lesnik P, Masana L, Nordestgaard BG, Ray KK, Reiner Z, Taskinen MR, Tokgözoglu L, Tybjærg-Hansen A, Watts GF (2011) Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 32:1345–1361CrossRefGoogle Scholar
  7. 7.
    Tian L, Liu Y, Qin Y, Long S, Xu Y, Fu M (2010) Association of the low-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio and concentrations of plasma lipids with high-density lipoprotein subclass distribution in the Chinese population. Lipids Health Dis 9:1–10. doi: 10.1186/1476-511X-9-69 CrossRefGoogle Scholar
  8. 8.
    Wu T, Fu J, Yang Y, Zhang L, Han J (2009) The effects of phytosterols/stanols on blood lipid profiles: a systematic review with meta-analysis. Asia Pac J Clin Nutr 18:179–186Google Scholar
  9. 9.
    Derosa G, Sibilla S (2007) Optimizing combination treatment in the management of type 2 diabetes. Vasc Health Risk Manag 3:665–671Google Scholar
  10. 10.
    Schuck RN, Mendys PM, Simpson RJ Jr (2013) Beyond statins: lipid management to reduce cardiovascular risk. Pharmacotherapy 33:754–764CrossRefGoogle Scholar
  11. 11.
    Gangji AS, Cukierman T, Gerstein HC, Goldsmith CH, Clase CM (2007) A systematic review and meta-analysis of hypoglycemia and cardiovascular events: a comparison of glyburide with other secretagogues and with insulin. Diab Care 30:389–394CrossRefGoogle Scholar
  12. 12.
    Salpeter SR, Greyber E, Pasternak GA, Salpeter EE (2003) Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Arch Int Med 163:2594–2602CrossRefGoogle Scholar
  13. 13.
    Vermes A, Vermes I (2004) Genetic polymorphisms in cytochrome P450 enzymes: effect on efficacy and tolerability of HMG-CoA reductase inhibitors. Am J Cardiovasc Drugs 4:247–255CrossRefGoogle Scholar
  14. 14.
    Golomb BA, Evans MA (2008) Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs 8:373–418CrossRefGoogle Scholar
  15. 15.
    Aramwit P, Supasyndh O, Siritienthong T, Bang N (2013) Mulberry leaf reduces oxidation and C-reactive protein level in patients with mild dyslipidemia. Biomed Res Int. doi: 10.1155/2013/787981 Google Scholar
  16. 16.
    Asai A, Nakagawa K, Higuchi O, Kimura T, Kojima Y, Kariya J, Miyazawa T, Oikawa S (2011) Effect of mulberry leaf extract with enriched 1-deoxynojirimycin content on postprandial glycemic control in subjects with impaired glucose metabolism. J Diab Invest 2:318–323CrossRefGoogle Scholar
  17. 17.
    Kim JY, Ok HM, Kim J, Park SW, Kwon SW, Kwon O (2015) Mulberry leaf extract improves postprandial glucose response in prediabetic subjects: a randomized, double-blind placebo-controlled trial. J Med Food 18:306–313CrossRefGoogle Scholar
  18. 18.
    Choonwatchana N, Malaisit D (2015) Effect of mulberry leaf extract capsule on blood lipid profile of dyslipidemic patients. Dessertation. Mahasarakham UniversityGoogle Scholar
  19. 19.
    Trimarco V, Izzo R, Stabile E, Rozza F, Santoro M, Manzi MV, Serino F, Giacomo SG, Esposito G, Trimarco B (2015) Effects of a new combination of nutraceuticals with Morus alba on lipid profile, insulin sensitivity and endothelial function in dyslipidemic subjects. A cross-over, randomized, double-blind trial. High Blood Press Cardiovasc Prev 22:149–154CrossRefGoogle Scholar
  20. 20.
    Chung HI, Kim J, Kim JY, Kwon O (2013) Acute intake of mulberry leaf aqueous extract affects postprandial glucose response after maltose loading: randomized double-blind placebo-controlled pilot study. J Funct Foods 13:1502–1506CrossRefGoogle Scholar
  21. 21.
    Kim HJ, Yoon KH, Kang MJ, Yim HW, Lee KS, Vuksan V, Sung MK (2012) A six-month supplementation of mulberry, Korean red ginseng, and banana decreases biomarkers of systemic low-grade inflammation in subjects with impaired glucose tolerance and type 2 diabetes. Evid Based Complement Alternat Med. doi: 10.1155/2012/735191 Google Scholar
  22. 22.
    Higgins J, Green SE (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration. http:// Accessed 12 November, 2014
  23. 23.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. doi: 10.1136/bmj.b2535 Google Scholar
  24. 24.
    Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12CrossRefGoogle Scholar
  25. 25.
    Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA (2011) The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. doi: 10.1136/bmj.d5928 Google Scholar
  26. 26.
    The JAMA network (2000) SI conversion calculator. JAMA 283:134–135Google Scholar
  27. 27.
    Egger M, Davey-Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634CrossRefGoogle Scholar
  28. 28.
    Kimura T, Nakagawa K, Kubota H, Kojima Y, Goto Y, Yamagishi K, Oita S, Oikawa S, Miyazawa T (2007) Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J Agric Food Chem 55:5867–5874CrossRefGoogle Scholar
  29. 29.
    Mudra M, Ercan-Fang N, Zhong L, Furne J, Levitt M (2007) Influence of mulberry leaf extract on the blood glucose and breath hydrogen response to ingestion of 75 g sucrose by type 2 diabetic and control subjects. Diab Care 30:1272–1274CrossRefGoogle Scholar
  30. 30.
    Nakamura S, Hashiguchi M, Yoshihiko Y, Oku T (2011) Hypoglycemic effects of Morus alba leaf extract on postprandial glucose and insulin levels in patients with type 2 diabetes treated with sulfonylurea hypoglycemic agents. J Diab Metab. doi: 10.4172/2155-6156.1000158 Google Scholar
  31. 31.
    Sukriket P, Lookhanumanjao S, Bumrungpert A (2014) The effect of mulberry leaf tea on postprandial glycemic control and insulin sensitivity in pre-diabetic and non-diabetic subjects. Accessed 15 Dec 2014
  32. 32.
    Banu S, Jabir NR, Manjunath NC, Khan MS, Ashraf GM, Kamal MA, Tabrez S (2015) Reduction of post-prandial hyperglycemia by mulberry tea in type-2 diabetes patients. Saudi J Biol Sci 22:32–36CrossRefGoogle Scholar
  33. 33.
    Banchobphutsa Y, Jarasphol R (2014) The efficacy of Morus alba leaf tea in patents with dyslipidemia. Accessed 15 Dec, 2014
  34. 34.
    Hu M, Zeng W, Tomlinson B (2014) Evaluation of a crataegus-based multiherb formula for dyslipidemia: a randomized, double-blind, placebo-controlled clinical trial. Evid Based Complement Alternat. doi: 10.1155/2014/365742 Google Scholar
  35. 35.
    World Health Organisation (2000) General guidelines for methodologies on research and evaluation of traditional medicine. World Health Organisation, GenevaGoogle Scholar
  36. 36.
    Hansawasdi C, Kawabata J (2006) Alpha-glucosidase inhibitory effect of mulberry (Morus alba) leaves on Caco-2. Fitoterapia 77:568–573CrossRefGoogle Scholar
  37. 37.
    Habeeb MN, Naik PR, Moqbel FS (2012) Inhibition of α-glucosidase and α-amylase by Morus alba linn leaf extracts. J Pharm Res 5:285–289Google Scholar
  38. 38.
    Vichasilp C, Nakagawa K, Sookwong P, Higuchi O, Kimura F, Miyazawa T (2012) A novel gelatin crosslinking method retards release of mulberry 1-deoxynojirimycin providing a prolonged hypoglycaemic effect. Food Chem 134:1823–1830CrossRefGoogle Scholar
  39. 39.
    Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, Kato A, Nash RJ, Lee HS, Ryu KS (2011) Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J Agric Food Chem 49:4208–4213CrossRefGoogle Scholar
  40. 40.
    Nakagawa K (2013) Studies targeting α-glucosidase inhibition, antiangiogenic effects, and lipid modification regulation: background, evaluation, and challenges in the development of food ingredients for therapeutic purposes. Biosci Biotechnol Biochem 77:900–908CrossRefGoogle Scholar
  41. 41.
    Lown M, Fuller R, Lightowler H, Fraser A, Gallagher A, Stuart B, Byrne CD, Lewith G (2015) Mulberry extract to modulate blood glucose responses in noRmoglYcaemic adults (MULBERRY): study protocol for a randomised controlled trial. Trials 16:486CrossRefGoogle Scholar
  42. 42.
    Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290:486–494CrossRefGoogle Scholar
  43. 43.
    Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M (2004) Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J 25:10–16CrossRefGoogle Scholar
  44. 44.
    Chen JM, Chang CW, Lin YC, Horng JT, Sheu WH (2014) Acarbose treatment and the risk of cardiovascular disease in type 2 diabetic patients: a nationwide seven-year follow-up study. J Diab Res. doi: 10.1155/2014/812628 Google Scholar
  45. 45.
    Yu PC, Bosnyak Z, Ceriello A (2010) The importance of glycated haemoglobin (HbA1c) and postprandial glucose (PPG) control on cardiovascular outcomes in patients with type 2 diabetes. Diab Res Clin Pract 89(1):1–9CrossRefGoogle Scholar
  46. 46.
    Shishtar E, Sievenpiper JL, Djedovic V, Cozma AI, Ha V, Jayalath VH, Jenkins DJ, Meija SB, de Souza RJ, Jovanovski E, Vuksan V (2014) The effect of ginseng (The Genus Panax) on glycemic control: a systematic review and meta-analysis of randomized controlled clinical trials. PLoS ONE. doi: 10.1371/journal.pone.0107391 Google Scholar
  47. 47.
    Kong WH, Oh SH, Ahn YR, Kim KW, Kim JH, Seo SW (2008) Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models. J Agric Food Chem 56:2613–2619CrossRefGoogle Scholar
  48. 48.
    Suo HS, Yan YH, Ko CH, Chen KM, Lee SC, Liu CT (2014) A comparison of food-grade folium mori (Sāng Yè) extract and 1-deoxynojirimycin for glycemic control and renal function in streptozotocin-induced diabetic rats. J Tradit Complement Med 4:162–170CrossRefGoogle Scholar
  49. 49.
    Kojima Y, Kimura T, Nakagawa K, Asai A, Hasumi K, Oikawa S, Miyazawa T (2010) Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in human. J Clin Biochem Nutr 47:155–161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wiraphol Phimarn
    • 1
    Email author
  • Kittisak Wichaiyo
    • 1
  • Khuntawan Silpsavikul
    • 1
  • Bunleu Sungthong
    • 2
  • Kritsanee Saramunee
    • 1
  1. 1.Social Pharmacy Research Unit, Faculty of PharmacyMahasarakham UniversityKantharawichaiThailand
  2. 2.Pharmaceutical Chemistry and Natural Products Research Unit, Faculty of PharmacyMahasarakham UniversityKantharawichaiThailand

Personalised recommendations