European Journal of Nutrition

, Volume 56, Issue 4, pp 1485–1492 | Cite as

Wine consumption reduced postprandial platelet sensitivity against platelet activating factor in healthy men

  • Marianna N. Xanthopoulou
  • Konstantia Kalathara
  • Sophia Melachroinou
  • Kalliopi Arampatzi-Menenakou
  • Smaragdi Antonopoulou
  • Mary Yannakoulia
  • Elizabeth FragopoulouEmail author
Original Contribution



Platelet activating factor (PAF) is a potent inflammatory and thrombotic mediator that participates in the initiation and prolongation of atherosclerosis. The aim of the present study was to evaluate the potential effect of wine consumption on platelet aggregation against PAF.


The study had cross-over design. Ten healthy men participated in four daily trials on separate days: They consumed a standardized meal along with white wine, Robola variety (trial R), or red wine, Cabernet Sauvignon variety (trial CS), or an ethanol solution (trial E), or water (trial W). Blood samples were collected before and after meal consumption and at several time points during the next 6 h. Platelet aggregation against PAF (EC50 values) and several blood biomarkers were measured, and incremental areas under the curve (iAUC) were calculated.


A significant trial effect was found in platelet sensitivity against PAF (p trial = 0.01). Moreover, the iAUC–PAF EC50 of CS trial was higher compared to both iAUC–PAF EC50 of E and W trials (P = 0.04, P = 0.02). Plasminogen activator inhibitor-1 iAUC was higher in all alcoholic beverages compare with the one of W trial (P E  = 0.05, P R  = 0.01, P CS = 0.01). Triacylglycerol iAUC increased significantly only in E compared to W trial (P = 0.04) and were significantly lower at 60–120 min in wine trials compared to the one of E (P < 0.05).


Wine consumption improved platelet sensitivity independently of alcohol, kept triacylglycerols at lower levels during their postprandial elevation, and did not affect plasminogen activator inhibitor-1 levels more adversely than ethanol per se.


Thrombosis Inflammation Microconstituents Phenolic compounds Alcohol Postprandial 



We would like to thank Antigoni Tsiafitsa for her technical assistance in blood samples collection. The wines used in the study were kindly offered by Domaine Hatzimichalis.


The study was supported through a research funding from the Graduate Program of the Department of Nutrition and Dietetics, Harokopio University.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

394_2016_1194_MOESM1_ESM.doc (130 kb)
Supplementary material 1 (DOC 129 kb)


  1. 1.
    Renaud S, Lanzmann-Petithory D, Gueguen R, Conard P (2004) Alcohol and mortality from all causes. Biol Res 37(2):183–187. doi: 10.4067/S0716-97602004000200002 CrossRefGoogle Scholar
  2. 2.
    Klatsky AL (2009) Alcohol and cardiovascular diseases. Expert Rev Cardiovasc Ther 7(5):499–506. doi: 10.1586/erc.09.22 CrossRefGoogle Scholar
  3. 3.
    Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ (1999) Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ 319(7224):1523–1528. doi: 10.1136/bmj.319.7224.1523 CrossRefGoogle Scholar
  4. 4.
    Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526. doi: 10.1016/0140-6736(92)91277-F CrossRefGoogle Scholar
  5. 5.
    Costanzo S, Di Castelnuovo A, Donati MB, Iacoviello L, de Gaetano G (2011) Wine, beer or spirit drinking in relation to fatal and non-fatal cardiovascular events: a meta-analysis. Eur J Epidemiol 26(11):833–850. doi: 10.1007/s10654-011-9631-0 CrossRefGoogle Scholar
  6. 6.
    Covas MI, Gambert P, Fitó M, de la Torre R (2010) Wine and oxidative stress: up-to-date evidence of the effects of moderate wine consumption on oxidative damage in humans. Atherosclerosis 208(2):297–304. doi: 10.1016/j.atherosclerosis.2009.06.031 CrossRefGoogle Scholar
  7. 7.
    Fragopoulou E, Demopoulos CA, Antonopoulou S (2009) Lipid minor constituents in wines. A biochemical approach in the French paradox. Int J Wine Res 1(1):131–143. doi: 10.2147/ijwr.s4587 Google Scholar
  8. 8.
    Karatzi K, Karatzis E, Papamichael C, Lekakis J, Zampelas A (2009) Effects of red wine on endothelial function: postprandial studies vs clinical trials. Nutr Metab Cardiovasc Dis 19(10):744–750. doi: 10.1016/j.numecd.2009.04.006 CrossRefGoogle Scholar
  9. 9.
    Calabriso N, Scoditti E, Massaro M, Pellegrino M, Storelli C, Ingrosso I, Giovinazzo G, Carluccio MA (2015) Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression. Eur J Nutr. doi: 10.1007/s00394-015-0865-6 Google Scholar
  10. 10.
    Keating FK, Schneider DJ (2009) The influence of platelet activating factor on the effects of platelet agonists and antiplatelet agents in vitro. J Thromb Thrombolysis 28(1):38–45. doi: 10.1007/s11239-008-0239-5 CrossRefGoogle Scholar
  11. 11.
    Demopoulos CA, Karantonis HC, Antonopoulou S (2003) Platelet activating factor—a molecular link between atherosclerosis theories. Eur J Lipid Sci Technol 105(11):705–716. doi: 10.1002/ejlt.200300845 CrossRefGoogle Scholar
  12. 12.
    Ninio E (2005) Phospholipid mediators in the vessel wall: involvement in atherosclerosis (2005). Curr Opin Clin Nutr Metab Care 8(2):123–131. doi: 10.1097/00075197-200503000-00004 CrossRefGoogle Scholar
  13. 13.
    Detopoulou P, Fragopoulou E, Nomikos T, Yannakoulia M, Stamatakis G, Panagiotakos DB, Antonopoulou S (2015) The relation of diet with PAF and its metabolic enzymes in healthy volunteers. Eur J Nutr 54(1):25–34. doi: 10.1007/s00394-014-0682-3 CrossRefGoogle Scholar
  14. 14.
    Nomikos T, Fragopoulou E, Antonopoulou S (2007) Food ingredients and lipid mediators. Curr Nutr Food Sci 3(4):255. doi: 10.2174/1573401310703040255 CrossRefGoogle Scholar
  15. 15.
    Fragopoulou E, Antonopoulou S, Demopoulos CA (2002) Biologically active lipids with antiatherogenic properties from white wine and must. J Agric Food Chem 50:2684–2694. doi: 10.1021/jf011288u CrossRefGoogle Scholar
  16. 16.
    Fragopoulou E, Antonopoulou S, Nomikos T, Demopoulos CA (2003) Structure elucidation of phenolic compounds from red/white wine with antiatherogenic properties. BBA Mol Cell Biol Lipids 1632(1–3):90–99. doi: 10.1016/s1388-1981(03)00066-0 CrossRefGoogle Scholar
  17. 17.
    Xanthopoulou MN, Fragopoulou E, Kalathara K, Nomikos T, Karantonis HC, Antonopoulou S (2010) Antioxidant and anti-inflammatory activity of red and white wine extracts. Food Chem 120(3):665–672. doi: 10.1016/j.foodchem.2009.10.058 CrossRefGoogle Scholar
  18. 18.
    Hendriks HF, Veenstra J, Velthuis-te Wierik EJ, Schaafsma G, Kluft C (1994) Effect of moderate dose of alcohol with evening meal on fibrinolytic factors. BMJ 308:1003–1006. doi: 10.1136/bmj.308.6935.1003 CrossRefGoogle Scholar
  19. 19.
    Karatzi K, Papamichael C, Aznaouridis K, Karatzis E, Lekakis J, Matsouka C, Boskou G, Chiou A, Sitara M, Feliou G, Kontoyiannis D, Zampelas A, Mavrikakis M (2004) Constituents of red wine other than alcohol improve endothelial function in patients with coronary artery disease. Coron Artery Dis 15(8):485–490. doi: 10.1097/00019501-200412000-00005 CrossRefGoogle Scholar
  20. 20.
    Blanco-Colio LM, Valderrama M, Alvarez-Sala LA, Bustos C, Ortego M, Hernández-Presa MA, Cancelas P, Gómez-Gerique J, Millán J, Egido J (2000) Red wine intake prevents nuclear factor-kappaB activation in peripheral blood mononuclear cells of healthy volunteers during postprandial lipemia. Circulation 102(9):1020–1026. doi: 10.1161/01.cir.102.9.1020 CrossRefGoogle Scholar
  21. 21.
    Tousoulis D, Ntarladimas I, Antoniades C, Vasiliadou C, Tentolouris C, Papageorgiou N, Latsios G, Stefanadis C (2008) Acute effects of different alcoholic beverages on vascular endothelium, inflammatory markers and thrombosis fibrinolysis system. Clin Nutr 27(4):594–600. doi: 10.1016/j.clnu.2008.01.002 CrossRefGoogle Scholar
  22. 22.
    Numminen H, Kobayashi M, Uchiyama S, Iwata M, Ikeda Y, Riutta A, Syrjala M, Kekomaki R, Hillbom M (2000) Effects of alcohol and the evening meal on shear-induced platelet aggregation and urinary excretion of prostanoids. Alcohol Alcohol 35:594–600. doi: 10.1093/alcalc/35.6.594 CrossRefGoogle Scholar
  23. 23.
    Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  24. 24.
    Zimmerman GA, McIntyre TM, Prescott SM, Stafforini DM (2002) The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. Crit Care Med 30:S294–S301. doi: 10.1097/00003246-200205001-00020 CrossRefGoogle Scholar
  25. 25.
    Antonopoulou S, Fragopoulou E, Karantonis HC, Mitsou E, Sitara M, Rementzis J, Mourelatos A, Ginis A, Phenekos C (2006) Effect of traditional Greek Mediterranean meals on platelet aggregation in normal subjects and in patients with type 2 diabetes mellitus. J Med Food 9(3):356–362. doi: 10.1089/jmf.2006.9.356 CrossRefGoogle Scholar
  26. 26.
    Fragopoulou E, Detopoulou P, Nomikos T, Pliakis E, Panagiotakos DB, Antonopoulou S (2012) Mediterranean wild plants reduce postprandial platelet aggregation in patients with metabolic syndrome. Metabolism 61(3):325–334. doi: 10.1016/j.metabol.2011.07.006 CrossRefGoogle Scholar
  27. 27.
    Mikhailidis DP, Jeremy JY, Barradas MA, Green N, Dandona P (1983) Effect of ethanol on vascular prostacyclin (prostaglandin I2) synthesis. platelet aggregation. and platelet thromboxane release. Br Med J (Clin Res Ed) 287(6404):1495–1498. doi: 10.1136/bmj.287.6404.1495 CrossRefGoogle Scholar
  28. 28.
    Zhang QH, Das K, Siddiqui S, Myers AK (2000) Effects of acute moderate ethanol consumption on human platelet aggregation in platelet-rich plasma and whole blood. Alcohol Clin Exp Res 24(4):528–534. doi: 10.1111/j.1530-0277.2000.tb02021.x CrossRefGoogle Scholar
  29. 29.
    Smith A, Patterson C, Yarnell J, Rumley A, Ben-Shlomo Y, Lowe G (2005) Which hemostatic markers add to the predictive value of conventional risk factors for coronary heart disease and ischemic stroke? The Caerphilly Study. Circulation 112:3080–3087. doi: 10.1161/circulationaha.105.557132 CrossRefGoogle Scholar
  30. 30.
    Byrne CD, Wareham NJ, Martensz ND, Humphries SE, Metcalfe JC, Grainger DJ (1998) Increased PAI activity and PAI-1 antigen occurring with an oral fat load: associations with PAI-1 genotype and plasma active TGF-beta levels. Atherosclerosis 140:45–53. doi: 10.1016/s0021-9150(98)00108-7 CrossRefGoogle Scholar
  31. 31.
    Djoussé L, Pankow JS, Arnett DK, Zhang Y, Hong Y, Province MA, Ellison RC (2000) Alcohol consumption and plasminogen activator inhibitor type 1: the National Heart, Lung, and Blood Institute Family Heart Study. Am Heart J 139(4):704–709. doi: 10.1016/s0002-8703(00)90052-8 CrossRefGoogle Scholar
  32. 32.
    Siler SQ, Neese RA, Hellerstein MK (1999) De novo lipogenesis, lipid kinetics and whole-body lipid balances in humans after acute alcohol consumption. Am J Clin Nutr 70(5):928–936Google Scholar
  33. 33.
    Yngen M, Li N, Hjemdahl P, Wallén NH (2001) Insulin enhances platelet activation in vitro. Thromb Res 104(2):85–91. doi: 10.1016/s0049-3848(01)00348-6 CrossRefGoogle Scholar
  34. 34.
    Hiramatsu K, Nozaki H, Arimori S (1987) Reduction of platelet aggregation induced by euglycaemic insulin clamp. Diabetologia 30(5):310–313. doi: 10.1007/BF00299023 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marianna N. Xanthopoulou
    • 1
  • Konstantia Kalathara
    • 1
  • Sophia Melachroinou
    • 1
  • Kalliopi Arampatzi-Menenakou
    • 1
  • Smaragdi Antonopoulou
    • 1
  • Mary Yannakoulia
    • 1
  • Elizabeth Fragopoulou
    • 1
    Email author
  1. 1.Department of Nutrition and DieteticsHarokopio UniversityAthensGreece

Personalised recommendations