European Journal of Nutrition

, Volume 56, Issue 3, pp 1347–1357 | Cite as

Acute intake of quercetin from onion skin extract does not influence postprandial blood pressure and endothelial function in overweight-to-obese adults with hypertension: a randomized, double-blind, placebo-controlled, crossover trial

  • Verena Brüll
  • Constanze Burak
  • Birgit Stoffel-Wagner
  • Siegfried Wolffram
  • Georg Nickenig
  • Cornelius Müller
  • Peter Langguth
  • Birgit Alteheld
  • Rolf Fimmers
  • Peter Stehle
  • Sarah EgertEmail author
Original Contribution



To determine whether postprandial metabolic and vascular responses induced by a high-fat and high-carbohydrate meal are attenuated by ingestion of the flavonol quercetin.


Twenty-two overweight-to-obese hypertensive patients participated in a randomized, double-blind, controlled, crossover meal study. They consumed a test meal (challenge) rich in energy (4754 kJ), fat (61.6 g), saturated fatty acids (53 % of total fatty acids), and carbohydrates (113.3 g) with either placebo or 54 mg quercetin. Blood pressure, reactive hyperemia index (RHI), high-sensitive C-reactive protein (hs-CRP), soluble endothelial-derived adhesion molecules, parameters of lipid and glucose metabolism, and markers of antioxidant status were measured before the meal and at 2 and 4 h postprandially.


Systolic and diastolic blood pressure increased significantly over time, but were not affected by treatment (placebo or quercetin). During both treatments, serum endothelin-1, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and plasma asymmetric dimethylarginine slightly decreased over time, whereas RHI increased. Serum triglycerides, total cholesterol, and insulin significantly increased, whereas HDL cholesterol and glucose significantly decreased over time, again with no effect of treatment. Plasma α-tocopherol significantly increased, and plasma Trolox equivalent antioxidative capacity decreased over time. Serum hs-CRP, plasma retinol, and β-carotene did not significantly change during the trial.


In hypertensive patients, a high-energy meal did not lead to postprandial impairment of vascular endothelial function. Postprandial metabolic responses induced by the challenge, such as lipemia and insulinemia, were not attenuated by the concomitant ingestion of quercetin.

Clinical trial

This trial was registered at and as DRKS00000555.


Quercetin Blood pressure Postprandial metabolism Cardiovascular diseases Endothelial function 



Asymmetric dimethylarginine


Cardiovascular diseases


Flow-mediated dilatation


High-sensitive C-reactive protein


Nitric oxide


Peripheral arterial tonometry


Reactive hyperemia index


Repeated-measures ANOVA


Soluble endothelial selectin


Soluble intercellular adhesion molecule-1


Soluble vascular cell adhesion molecule-1


Trolox equivalent antioxidative capacity



The authors are indebted to our volunteers for their interest and participation in our study; to Rudolf Wild GmbH & Company KG (Matthias Saß) for the supply of the onion skin extract; to Petra Pickert, Margret Schüller, Christel Bierschbach, Adelheid Schuch, Anke Ernst, Petra Schulz, Anke Carstensen, and Ute Hartung for excellent technical assistance; and to Sarah Krönung, Elvis Kolobara, Claudia Pagliarucci, Lisa Albrecht, Ramona Napp, and Michael Napp for performing the venipunctures. This study was supported by Grant No. EG292/3-1 of the German Research Foundation (to SE).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The study was conducted according to the guidelines laid down in the 1964 Declaration of Helsinki, and its later amendments and all procedures involving human participants were approved by the ethical committee of the Medical Faculty of the Rheinische Friedrich-Wilhelms-Universität Bonn, Germany. Written informed consent was obtained from all participants.


  1. 1.
    Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043CrossRefGoogle Scholar
  2. 2.
    Wang X, Ouyang YY, Liu J, Zhao G (2014) Flavonoid intake and risk of CVD: a systematic review and meta-analysis of prospective cohort studies. Br J Nutr 111(1):1–11Google Scholar
  3. 3.
    Larson AJ, Symons JD, Jalili T (2012) Therapeutic potential of quercetin to decrease blood pressure: review of efficacy and mechanisms. Adv Nutr 3:39–46CrossRefGoogle Scholar
  4. 4.
    Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337CrossRefGoogle Scholar
  5. 5.
    Perez-Vizcaino F, Duarte J (2010) Flavonols and cardiovascular disease. Mol Asp Med 31:478–494CrossRefGoogle Scholar
  6. 6.
    Rivera L, Moron R, Sanchez M, Zarzuelo A, Galisteo M (2008) Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obes (Silver Spring) 16:2081–2087CrossRefGoogle Scholar
  7. 7.
    Jeong SM, Kang MJ, Choi HN, Kim JH, Kim JI (2012) Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr Res Pract 6:201–207CrossRefGoogle Scholar
  8. 8.
    Kobori M, Masumoto S, Akimoto Y, Oike H (2011) Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6 J mice. Mol Nutr Food Res 55:530–540CrossRefGoogle Scholar
  9. 9.
    Duarte J, Jimenez R, O’Valle F, Galisteo M, Perez-Palencia R, Vargas F, Perez-Vizcaino F, Zarzuelo A, Tamargo J (2002) Protective effects of the flavonoid quercetin in chronic nitric oxide deficient rats. J Hypertens 20:1843–1854CrossRefGoogle Scholar
  10. 10.
    Galindo P, Rodriguez-Gomez I, Gonzalez-Manzano S, Duenas M, Jimenez R, Menendez C, Vargas F, Tamargo J, Santos-Buelga C, Perez-Vizcaino F, Duarte J (2012) Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via deconjugation. PLoS ONE 7:e32673CrossRefGoogle Scholar
  11. 11.
    Sanchez M, Galisteo M, Vera R, Villar IC, Zarzuelo A, Tamargo J, Perez-Vizcaino F, Duarte J (2006) Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J Hypertens 24:75–84CrossRefGoogle Scholar
  12. 12.
    Egert S, Bosy-Westphal A, Seiberl J, Kurbitz C, Settler U, Plachta-Danielzik S, Wagner AE, Frank J, Schrezenmeir J, Rimbach G, Wolffram S, Müller MJ (2009) Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr 102:1065–1074CrossRefGoogle Scholar
  13. 13.
    Egert S, Boesch-Saadatmandi C, Wolffram S, Rimbach G, Müller MJ (2010) Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. J Nutr 140:278–284CrossRefGoogle Scholar
  14. 14.
    Brüll V, Burak C, Stoffel-Wagner B, Wolffram S, Nickenig G, Müller C, Langguth P, Alteheld B, Fimmers R, Naaf S, Zimmermann BF, Stehle P, Egert S (2015) Effects of a quercetin-rich onion skin extract on 24 hours ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomized double-blinded placebo-controlled crossover trial. Br J Nutr 114(8):1263–1277Google Scholar
  15. 15.
    Burton-Freeman B (2010) Postprandial metabolic events and fruit-derived phenolics: a review of the science. Br J Nutr 104(Suppl 3):S1–S14CrossRefGoogle Scholar
  16. 16.
    Sies H, Stahl W, Sevanian A (2005) Nutritional, dietary and postprandial oxidative stress. J Nutr 135:969–972Google Scholar
  17. 17.
    Jackson KG, Poppitt SD, Minihane AM (2012) Postprandial lipemia and cardiovascular disease risk: interrelationships between dietary, physiological and genetic determinants. Atherosclerosis 220:22–33CrossRefGoogle Scholar
  18. 18.
    Egert S, Wolffram S, Bosy-Westphal A, Boesch-Saadatmandi C, Wagner AE, Frank J, Rimbach G, Müller MJ (2008) Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. J Nutr 138:1615–1621Google Scholar
  19. 19.
    Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, Jones DW, Kurtz T, Sheps SG, Roccella EJ (2005) Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension 45:142–161CrossRefGoogle Scholar
  20. 20.
    Axtell AL, Gomari FA, Cooke JP (2010) Assessing endothelial vasodilator function with the Endo-PAT 2000. J Vis Exp. doi: 10.3791/2167
  21. 21.
    Kuvin JT, Patel AR, Sliney KA, Pandian NG, Sheffy J, Schnall RP, Karas RH, Udelson JE (2003) Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am Heart J 146:168–174CrossRefGoogle Scholar
  22. 22.
    Nohria A, Gerhard-Herman M, Creager MA, Hurley S, Mitra D, Ganz P (2006) Role of nitric oxide in the regulation of digital pulse volume amplitude in humans. J Appl Physiol 101:545–548CrossRefGoogle Scholar
  23. 23.
    Bonetti PO, Pumper GM, Higano ST, Holmes DR Jr, Kuvin JT, Lerman A (2004) Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J Am Coll Cardiol 44:2137–2141CrossRefGoogle Scholar
  24. 24.
    Hamburg NM, Keyes MJ, Larson MG, Vasan RS, Schnabel R, Pryde MM, Mitchell GF, Sheffy J, Vita JA, Benjamin EJ (2008) Cross-sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation 117:2467–2474CrossRefGoogle Scholar
  25. 25.
    Fürst P, Pollack L, Graser TA, Godel H, Stehle P (1990) Appraisal of four pre-column derivatization methods for the high-performance liquid chromatographic determination of free amino acids in biological materials. J Chromatogr 499:557–569CrossRefGoogle Scholar
  26. 26.
    Bieger J, Cermak R, Blank R, de Boer VC, Hollman PC, Kamphues J, Wolffram S (2008) Tissue distribution of quercetin in pigs after long-term dietary supplementation. J Nutr 138:1417–1420Google Scholar
  27. 27.
    Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci (Lond) 84:407–412CrossRefGoogle Scholar
  28. 28.
    Lacroix S, Rosiers CD, Tardif JC, Nigam A (2012) The role of oxidative stress in postprandial endothelial dysfunction. Nutr Res Rev 25:288–301CrossRefGoogle Scholar
  29. 29.
    Jackson KG, Armah CK, Minihane AM (2007) Meal fatty acids and postprandial vascular reactivity. Biochem Soc Trans 35:451–453CrossRefGoogle Scholar
  30. 30.
    Wallace JP, Johnson B, Padilla J, Mather K (2010) Postprandial lipaemia, oxidative stress and endothelial function: a review. Int J Clin Pract 64:389–403CrossRefGoogle Scholar
  31. 31.
    Pfeuffer MA, Auinger A, Bley U, Kraus-Stojanowic I, Lauce C, Winkler P, Rüfer CE, Frank J, Boesch-Saadatmandi C, Rimbach G, Schrezenmeir J (2013) Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammatory parameters in men with different APOE isoforms. Nutr Metab Cardiovasc Dis 23:403–409CrossRefGoogle Scholar
  32. 32.
    Rontoyanni VG, Chowienczyk PJ, Sanders TA (2010) Postprandial lipaemia does not affect resting haemodynamic responses but does influence cardiovascular reactivity to dynamic exercise. Br J Nutr 104:863–871CrossRefGoogle Scholar
  33. 33.
    Berryman CE, Grieger JA, West SG, Chen CY, Blumberg JB, Rothblat GH, Sankaranarayanan S, Kris-Etherton PM (2013) Acute consumption of walnuts and walnut components differentially affect postprandial lipemia, endothelial function, oxidative stress, and cholesterol efflux in humans with mild hypercholesterolemia. J Nutr 143:788–794CrossRefGoogle Scholar
  34. 34.
    Gnoni GV, Paglialonga G, Siculella L (2009) Quercetin inhibits fatty acid and triacylglycerol synthesis in rat-liver cells. Eur J Clin Invest 39:761–768CrossRefGoogle Scholar
  35. 35.
    Liu Y, Daleke DL, Fly AD (2012) Enhanced vascular function after acute fat-rich snacking in healthy males. Nutr Res 32:565–572CrossRefGoogle Scholar
  36. 36.
    Gokce N, Duffy SJ, Hunter LM, Keaney JF, Vita JA (2001) Acute hypertriglyceridemia is associated with peripheral vasodilation and increased basal flow in healthy young adults. Am J Cardiol 88:153–159CrossRefGoogle Scholar
  37. 37.
    Raitakari OT, Lai N, Griffiths K, McCredie R, Sullivan D, Celermajer DS (2000) Enhanced peripheral vasodilation in humans after a fatty meal. J Am Coll Cardiol 36:417–422CrossRefGoogle Scholar
  38. 38.
    Li Z, Henning SM, Zhang Y, Rahnama N, Zerlin A, Thames G, Tseng CH, Heber D (2013) Decrease of postprandial endothelial dysfunction by spice mix added to high-fat hamburger meat in men with Type 2 diabetes mellitus. Diabet Med 30:590–595CrossRefGoogle Scholar
  39. 39.
    Padilla J, Harris RA, Fly AD, Rink LD, Wallace JP (2006) The effect of acute exercise on endothelial function following a high-fat meal. Eur J Appl Physiol 98:256–262CrossRefGoogle Scholar
  40. 40.
    Berry SE, Tucker S, Banerji R, Jiang B, Chowienczyk PJ, Charles SM, Sanders TA (2008) Impaired postprandial endothelial function depends on the type of fat consumed by healthy men. J Nutr 138:1910–1914Google Scholar
  41. 41.
    Tushuizen ME, Nieuwland R, Scheffer PG, Sturk A, Heine RJ, Diamant M (2006) Two consecutive high-fat meals affect endothelial-dependent vasodilation, oxidative stress and cellular microparticles in healthy men. J Thromb Haemost 4:1003–1010CrossRefGoogle Scholar
  42. 42.
    Paschos GK, FitzGerald GA (2010) Circadian clocks and vascular function. Circ Res 106:833–841CrossRefGoogle Scholar
  43. 43.
    Otto ME, Svatikova A, Barretto RB, Santos S, Hoffmann M, Khandheria B, Somers V (2004) Early morning attenuation of endothelial function in healthy humans. Circulation 109:2507–2510CrossRefGoogle Scholar
  44. 44.
    Etsuda H, Takase B, Uehata A, Kusano H, Hamabe A, Kuhara R, Akima T, Matsushima Y, Arakawa K, Satomura K, Kurita A, Ohsuzu F (1999) Morning attenuation of endothelium-dependent, flow-mediated dilation in healthy young men: possible connection to morning peak of cardiac events? Clin Cardiol 22:417–421CrossRefGoogle Scholar
  45. 45.
    Tunctan B, Weigl Y, Dotan A, Peleg L, Zengil H, Ashkenazi I, Abacioglu N (2002) Circadian variation of nitric oxide synthase activity in mouse tissue. Chronobiol Int 19:393–404CrossRefGoogle Scholar
  46. 46.
    Baron AD (1994) Hemodynamic actions of insulin. Am J Physiol 267:E187–E202Google Scholar
  47. 47.
    Valensi P, Cosson E (2006) Hemodynamic changes in postprandial state. Diabetes Metab 32(Spec No 2):2S37–S241Google Scholar
  48. 48.
    Kukongviriyapan U, Sompamit K, Pannangpetch P, Kukongviriyapan V, Donpunha W (2012) Preventive and therapeutic effects of quercetin on lipopolysaccharide-induced oxidative stress and vascular dysfunction in mice. Can J Physiol Pharmacol 90:1345–1353CrossRefGoogle Scholar
  49. 49.
    Calabriso N, Scoditti E, Massaro M, Pellegrino M, Storelli C, Ingrosso I, Giovinazzo G, Carluccio MA (2015) Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression. Eur J Nutr 55(2):477–489Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Verena Brüll
    • 1
  • Constanze Burak
    • 1
  • Birgit Stoffel-Wagner
    • 2
  • Siegfried Wolffram
    • 3
  • Georg Nickenig
    • 4
  • Cornelius Müller
    • 4
  • Peter Langguth
    • 5
  • Birgit Alteheld
    • 1
  • Rolf Fimmers
    • 6
  • Peter Stehle
    • 1
  • Sarah Egert
    • 1
    Email author
  1. 1.Department of Nutrition and Food Sciences, Nutritional PhysiologyUniversity of BonnBonnGermany
  2. 2.Institute of Clinical Chemistry and Clinical PharmacologyUniversity Hospital BonnBonnGermany
  3. 3.Institute of Animal Nutrition and PhysiologyChristian-Albrechts-University KielKielGermany
  4. 4.Department of Cardiology, Angiology and PneumologyUniversity Hospital BonnBonnGermany
  5. 5.Institute of Pharmacy and Biochemistry, Department of Biopharmaceutics and Pharmaceutical TechnologyJohannes Gutenberg UniversityMainzGermany
  6. 6.Institute of Medical Biometry, Informatics and EpidemiologyUniversity Hospital BonnBonnGermany

Personalised recommendations