Advertisement

European Journal of Nutrition

, Volume 56, Issue 3, pp 1157–1168 | Cite as

Dietary and lifestyle determinants of acrylamide and glycidamide hemoglobin adducts in non-smoking postmenopausal women from the EPIC cohort

  • Mireia Obón-Santacana
  • Leila Lujan-Barroso
  • Heinz Freisling
  • Claire Cadeau
  • Guy Fagherazzi
  • Marie-Christine Boutron-Ruault
  • Rudolf Kaaks
  • Renée T. Fortner
  • Heiner Boeing
  • J. Ramón Quirós
  • Esther Molina-Montes
  • Saioa Chamosa
  • José María Huerta Castaño
  • Eva Ardanaz
  • Kay-Tee Khaw
  • Nick Wareham
  • Tim Key
  • Antonia Trichopoulou
  • Pagona Lagiou
  • Androniki Naska
  • Domenico Palli
  • Sara Grioni
  • Rosario Tumino
  • Paolo Vineis
  • Maria Santucci De Magistris
  • H. B. Bueno-de-Mesquita
  • Petra H. Peeters
  • Maria Wennberg
  • Ingvar A. Bergdahl
  • Hubert Vesper
  • Elio Riboli
  • Eric J. DuellEmail author
Original Contribution

Abstract

Purpose

Acrylamide was classified as ‘probably carcinogenic’ to humans in 1994 by the International Agency for Research on Cancer. In 2002, public health concern increased when acrylamide was identified in starchy, plant-based foods, processed at high temperatures. The purpose of this study was to identify which food groups and lifestyle variables were determinants of hemoglobin adduct concentrations of acrylamide (HbAA) and glycidamide (HbGA) in 801 non-smoking postmenopausal women from eight countries in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.

Methods

Biomarkers of internal exposure were measured in red blood cells (collected at baseline) by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) . In this cross-sectional analysis, four dependent variables were evaluated: HbAA, HbGA, sum of total adducts (HbAA + HbGA), and their ratio (HbGA/HbAA). Simple and multiple regression analyses were used to identify determinants of the four outcome variables. All dependent variables (except HbGA/HbAA) and all independent variables were log-transformed (log2) to improve normality. Median (25th–75th percentile) HbAA and HbGA adduct levels were 41.3 (32.8–53.1) pmol/g Hb and 34.2 (25.4–46.9) pmol/g Hb, respectively.

Results

The main food group determinants of HbAA, HbGA, and HbAA + HbGA were biscuits, crackers, and dry cakes. Alcohol intake and body mass index were identified as the principal determinants of HbGA/HbAA. The total percent variation in HbAA, HbGA, HbAA + HbGA, and HbGA/HbAA explained in this study was 30, 26, 29, and 13 %, respectively.

Conclusions

Dietary and lifestyle factors explain a moderate proportion of acrylamide adduct variation in non-smoking postmenopausal women from the EPIC cohort.

Keywords

Acrylamide Glycidamide Hemoglobin adducts Biomarkers Diet Nutrition 

Notes

Acknowledgments

This work was supported by the Wereld Kanker Onderzoek Fonds (WCRF NL) [Grant WCRF 2011/442] and by the Health Research Fund (FIS) of the Spanish Ministry of Health [Exp PI11/01473]. The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by the Health Research Fund (FIS) of the Spanish Ministry of Health, Regional Governments of Andalucía, Asturias, Basque Country, Murcia [no. 6236], Navarra and the Catalan Institute of Oncology, La Caixa [BM 06-130], Red Temática de Investigación Cooperativa en Cáncer [RD12/0036/0018; RD06/0020/0091] (Spain); Danish Cancer Society (Denmark); Ligue contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); Deutsche Krebshilfe, Deutsches Krebsforschungszentrum (DKFZ) and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro (AIRC) and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), the Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF) and Statistics Netherlands (the Netherlands); Nordic Center of Excellence in Food, Nutrition and Health-Helga (Norway); Swedish Cancer Society, Swedish Scientific Council and Regional Government of Skåne and Västerbotten (Sweden); Cancer Research UK, Medical Research Council (United Kingdom). MO-S is affiliated with the University of Barcelona.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Supplementary material

394_2016_1165_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 36 kb)

References

  1. 1.
    Friedman M (2003) Chemistry, biochemistry, and safety of acrylamide. A review. J Agric Food Chem 51:4504–4526CrossRefGoogle Scholar
  2. 2.
    Tareke E, Rydberg P, Karlsson P et al (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006CrossRefGoogle Scholar
  3. 3.
    Becalski A, Brady B, Feng S et al (2011) Formation of acrylamide at temperatures lower than 100 °C: the case of prunes and a model study. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:726–730. doi: 10.1080/19440049.2010.535217 CrossRefGoogle Scholar
  4. 4.
    Xu Y, Cui B, Ran R et al (2014) Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects. Food Chem Toxicol 69C:1–12. doi: 10.1016/j.fct.2014.03.037 CrossRefGoogle Scholar
  5. 5.
    Freisling H, Moskal A, Ferrari P et al (2013) Dietary acrylamide intake of adults in the European Prospective Investigation into Cancer and Nutrition differs greatly according to geographical region. Eur J Nutr 52:1369–1380CrossRefGoogle Scholar
  6. 6.
    World Health Organization (2011) Evaluation of certain food additives and contaminants: seventy-second report of the joint FAO/WHO expert committee on food additives. World Health Organization Technical Report Series, No. 960, pp 1–115Google Scholar
  7. 7.
    Zödl B, Schmid D, Wassler G et al (2007) Intestinal transport and metabolism of acrylamide. Toxicology 232:99–108. doi: 10.1016/j.tox.2006.12.014 CrossRefGoogle Scholar
  8. 8.
    LoPachin RM, Gavin T (2008) Acrylamide-induced nerve terminal damage: relevance to neurotoxic and neurodegenerative mechanisms. J Agric Food Chem 56:5994–6003CrossRefGoogle Scholar
  9. 9.
    IARC (1994) IARC working group on the evaluation of carcinogenic risks to humans: some industrial chemicals. Lyon, 15–22 February 1994. IARC Monogr Eval Carcinog Risks Hum 60:1–560Google Scholar
  10. 10.
    Fennell TR, Sumner SC, Walker VE (1992) A model for the formation and removal of hemoglobin adducts. Cancer Epidemiol Biomark Prev 1:213–219Google Scholar
  11. 11.
    Bergmark E (1997) Hemoglobin adducts of acrylamide and acrylonitrile in laboratory workers, smokers and nonsmokers. Chem Res Toxicol 10:78–84CrossRefGoogle Scholar
  12. 12.
    Vesper HW, Bernert JT, Ospina M et al (2007) Assessment of the relation between biomarkers for smoking and biomarkers for acrylamide exposure in humans. Cancer Epidemiol Biomark Prev 16:2471–2478CrossRefGoogle Scholar
  13. 13.
    EFSA Contam Panel (EFSA Panel on Contaminants in the Food Chain) (2015) Scientific opinion on acrylamide in food. EFSA J 13(6):4104. doi: 10.2903/j.efsa.2015.4104 CrossRefGoogle Scholar
  14. 14.
    Vesper HW, Slimani N, Hallmans G et al (2008) Cross-sectional study on acrylamide hemoglobin adducts in subpopulations from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. J Agric Food Chem 56:6046–6053CrossRefGoogle Scholar
  15. 15.
    Ferrari P, Freisling H, Duell EJ et al (2013) Challenges in estimating the validity of dietary acrylamide measurements. Eur J Nutr 52:1503–1512CrossRefGoogle Scholar
  16. 16.
    Bjellaas T, Olesen PT, Frandsen H et al (2007) Comparison of estimated dietary intake of acrylamide with hemoglobin adducts of acrylamide and glycidamide. Toxicol Sci 98:110–117CrossRefGoogle Scholar
  17. 17.
    Outzen M, Egeberg R, Dragsted L et al (2011) Dietary determinants for Hb-acrylamide and Hb-glycidamide adducts in Danish non-smoking women. Br J Nutr 105:1381–1387. doi: 10.1017/S0007114510005003 CrossRefGoogle Scholar
  18. 18.
    Wilson KM, Vesper HW, Tocco P et al (2009) Validation of a food frequency questionnaire measurement of dietary acrylamide intake using hemoglobin adducts of acrylamide and glycidamide. Cancer Causes Control 20:269–278CrossRefGoogle Scholar
  19. 19.
    Riboli E, Hunt KJ, Slimani N et al (2002) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5:1113–1124CrossRefGoogle Scholar
  20. 20.
    Obón-Santacana M, Freisling H, Peeters PH et al (2015) Acrylamide and glycidamide hemoglobin adduct levels and endometrial cancer risk: a nested case-control study in nonsmoking postmenopausal women from the EPIC cohort. Int J Cancer. doi: 10.1002/ijc.29853 Google Scholar
  21. 21.
    Obón-Santacana M, Lujan-Barroso L, Travis RC et al (2015) Acrylamide and glycidamide hemoglobin adducts and epithelial ovarian cancer: a nested case-control study in non-smoking postmenopausal women from the EPIC cohort. Cancer Epidemiol Biomark Prev. doi: 10.1158/1055-9965.EPI-15-0822 Google Scholar
  22. 22.
    Cust AE, Kaaks R, Friedenreich C et al (2007) Metabolic syndrome, plasma lipid, lipoprotein and glucose levels, and endometrial cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer 14:755–767. doi: 10.1677/ERC-07-0132 CrossRefGoogle Scholar
  23. 23.
    Peeters PH, Lukanova A, Allen N et al (2007) Serum IGF-I, its major binding protein (IGFBP-3) and epithelial ovarian cancer risk: the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer 14:81–90CrossRefGoogle Scholar
  24. 24.
    Obon-Santacana M, Slimani N, Lujan-Barroso L et al (2013) Dietary intake of acrylamide and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Ann Oncol 24:2645–2651CrossRefGoogle Scholar
  25. 25.
    Vesper HW, Ospina M, Meyers T et al (2006) Automated method for measuring globin adducts of acrylamide and glycidamide at optimized Edman reaction conditions. Rapid Commun Mass Spectrom 20:959–964CrossRefGoogle Scholar
  26. 26.
    Schabacker J, Schwend T, Wink M (2004) Reduction of acrylamide uptake by dietary proteins in a Caco-2 gut model. J Agric Food Chem 52:4021–4025. doi: 10.1021/jf035238w CrossRefGoogle Scholar
  27. 27.
    Wilson KM, Balter K, Adami HO et al (2009) Acrylamide exposure measured by food frequency questionnaire and hemoglobin adduct levels and prostate cancer risk in the Cancer of the Prostate in Sweden Study. Int J Cancer 124:2384–2390CrossRefGoogle Scholar
  28. 28.
    Willett W (2012) Nutritional epidemiology. Oxford University Press, OxfordCrossRefGoogle Scholar
  29. 29.
    Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  30. 30.
    Wareham NJ, Jakes RW, Rennie KL et al (2003) Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr 6:407–413CrossRefGoogle Scholar
  31. 31.
    McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1:30CrossRefGoogle Scholar
  32. 32.
    Kütting B, Uter W, Drexler H (2008) The association between self-reported acrylamide intake and hemoglobin adducts as biomarkers of exposure. Cancer Causes Control 19:273–281. doi: 10.1007/s10552-007-9090-9 CrossRefGoogle Scholar
  33. 33.
    Tran NL, Barraj LM, Murphy MM, Bi X (2010) Dietary acrylamide exposure and hemoglobin adducts—National Health and Nutrition Examination Survey (2003–04). Food Chem Toxicol 48:3098–3108. doi: 10.1016/j.fct.2010.08.003 CrossRefGoogle Scholar
  34. 34.
    Wirfalt E, Paulsson B, Tornqvist M et al (2008) Associations between estimated acrylamide intakes, and hemoglobin AA adducts in a sample from the Malmo Diet and Cancer cohort. Eur J Clin Nutr 62:314–323CrossRefGoogle Scholar
  35. 35.
    Xie Q, Liu Y, Sun H et al (2008) Inhibition of acrylamide toxicity in mice by three dietary constituents. J Agric Food Chem 56:6054–6060. doi: 10.1021/jf0730542 CrossRefGoogle Scholar
  36. 36.
    Vikstrom AC, Wilson KM, Paulsson B et al (2010) Alcohol influence on acrylamide to glycidamide metabolism assessed with hemoglobin-adducts and questionnaire data. Food Chem Toxicol 48:820–824CrossRefGoogle Scholar
  37. 37.
    Huang Y-F, Chen M-L, Liou S-H et al (2011) Association of CYP2E1, GST and mEH genetic polymorphisms with urinary acrylamide metabolites in workers exposed to acrylamide. Toxicol Lett 203:118–126. doi: 10.1016/j.toxlet.2011.03.008 CrossRefGoogle Scholar
  38. 38.
    Vesper HW, Sternberg MR, Frame T, Pfeiffer CM (2013) Among 10 sociodemographic and lifestyle variables, smoking is strongly associated with biomarkers of acrylamide exposure in a representative sample of the US population. J Nutr 143:995S–1000SCrossRefGoogle Scholar
  39. 39.
    Kotova N, Frostne C, Abramsson-Zetterberg L et al (2014) Differences in micronucleus frequency and acrylamide adduct levels with hemoglobin between vegetarians and non-vegetarians. Eur J Nutr. doi: 10.1007/s00394-014-0796-7 Google Scholar
  40. 40.
    Hogervorst JG, Baars BJ, Schouten LJ et al (2010) The carcinogenicity of dietary acrylamide intake: a comparative discussion of epidemiological and experimental animal research. Crit Rev Toxicol 40:485–512CrossRefGoogle Scholar
  41. 41.
    Hogervorst JG, Fortner RT, Mucci LA et al (2013) Associations between dietary acrylamide intake and plasma sex hormone levels. Cancer Epidemiol Biomark Prev 22:2024–2036CrossRefGoogle Scholar
  42. 42.
    Nagata C, Konishi K, Tamura T et al (2015) Associations of acrylamide intake with circulating levels of sex hormones and prolactin in premenopausal Japanese women. Cancer Epidemiol Biomark Prev 24:249–254. doi: 10.1158/1055-9965.EPI-14-0935 CrossRefGoogle Scholar
  43. 43.
    Powers SJ, Mottram DS, Curtis A, Halford NG (2013) Acrylamide concentrations in potato crisps in Europe from 2002 to 2011. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30:1493–1500. doi: 10.1080/19440049.2013.805439 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mireia Obón-Santacana
    • 1
  • Leila Lujan-Barroso
    • 1
  • Heinz Freisling
    • 2
  • Claire Cadeau
    • 3
    • 4
    • 5
  • Guy Fagherazzi
    • 3
    • 4
    • 5
  • Marie-Christine Boutron-Ruault
    • 3
    • 4
    • 5
  • Rudolf Kaaks
    • 6
  • Renée T. Fortner
    • 6
  • Heiner Boeing
    • 7
  • J. Ramón Quirós
    • 8
  • Esther Molina-Montes
    • 9
    • 10
  • Saioa Chamosa
    • 11
  • José María Huerta Castaño
    • 10
    • 12
  • Eva Ardanaz
    • 10
    • 13
  • Kay-Tee Khaw
    • 14
  • Nick Wareham
    • 15
  • Tim Key
    • 16
  • Antonia Trichopoulou
    • 17
    • 18
  • Pagona Lagiou
    • 19
    • 20
  • Androniki Naska
    • 17
    • 19
  • Domenico Palli
    • 21
  • Sara Grioni
    • 22
  • Rosario Tumino
    • 23
  • Paolo Vineis
    • 24
    • 25
  • Maria Santucci De Magistris
    • 26
  • H. B. Bueno-de-Mesquita
    • 25
    • 27
    • 28
    • 29
  • Petra H. Peeters
    • 25
    • 30
  • Maria Wennberg
    • 31
  • Ingvar A. Bergdahl
    • 32
  • Hubert Vesper
    • 33
  • Elio Riboli
    • 25
  • Eric J. Duell
    • 1
    Email author
  1. 1.Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of OncologyBellvitge Biomedical Research Institute (ICO-IDIBELL)BarcelonaSpain
  2. 2.Dietary Exposure Assessment GroupInternational Agency for Research on CancerLyonFrance
  3. 3.Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women’s Health TeamInsermVillejuifFrance
  4. 4.UMRS 1018Université Paris SudVillejuifFrance
  5. 5.Institut Gustave RoussyVillejuifFrance
  6. 6.Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  7. 7.Department of EpidemiologyGerman Institute of Human Nutrition Potsdam-RehbrueckeNuthetalGermany
  8. 8.Public Health and Participation DirectorateAsturiasSpain
  9. 9.Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de GranadaUniversidad de GranadaGranadaSpain
  10. 10.CIBER Epidemiology and Public Health CIBERESPMadridSpain
  11. 11.Public Health Division of Gipuzkoa-BIODONOSTIABasque Regional Health DepartmentSan SebastiánSpain
  12. 12.Department of EpidemiologyMurcia Regional Health AuthorityMurciaSpain
  13. 13.Navarre Public Health InstitutePamplonaSpain
  14. 14.University of Cambridge School of Clinical MedicineCambridgeUK
  15. 15.MRC Epidemiology UnitUniversity of CambridgeCambridgeUK
  16. 16.Cancer Epidemiology UnitUniversity of OxfordOxfordUK
  17. 17.Hellenic Health FoundationAthensGreece
  18. 18.Bureau of Epidemiologic ResearchAcademy of AthensAthensGreece
  19. 19.Department of Hygiene, Epidemiology and Medical StatisticsUniversity of Athens Medical SchoolAthensGreece
  20. 20.Department of EpidemiologyHarvard School of Public HealthBostonUSA
  21. 21.Molecular and Nutritional Epidemiology UnitCancer Research and Prevention Institute—ISPOFlorenceItaly
  22. 22.Epidemiology and Prevention UnitFondazione IRCSS Istituto Nazionale dei TumoriMilanItaly
  23. 23.Cancer Registry and Histopathology Unit“Civic-M.P.Arezzo” HospitalRagusaItaly
  24. 24.Human Genetics Foundation (HuGeF)TurinItaly
  25. 25.Department of Epidemiology and Biostatistics, School of Public HealthImperial College LondonLondonUK
  26. 26.Department of Clinical and Experimental MedicineFederico II UniversityNaplesItaly
  27. 27.Department for Determinants of Chronic Diseases (DCD)National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
  28. 28.Department of Gastroenterology and HepatologyUniversity Medical CentreUtrechtThe Netherlands
  29. 29.Department of Social and Preventive Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  30. 30.Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical CenterUtrechtThe Netherlands
  31. 31.Department of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
  32. 32.Department of Biobank ResearchUmeå UniversityUmeåSweden
  33. 33.Centers for Disease Control and PreventionAtlantaUSA

Personalised recommendations