Advertisement

European Journal of Nutrition

, Volume 56, Issue 3, pp 1053–1062 | Cite as

Effect of meal composition on postprandial glucagon-like peptide-1, insulin, glucagon, C-peptide, and glucose responses in overweight/obese subjects

  • Meena ShahEmail author
  • Brian Franklin
  • Beverley Adams-Huet
  • Joel Mitchell
  • Brooke Bouza
  • Lyn Dart
  • Melody Phillips
Original Contribution

Abstract

Background

Glucagon-like peptide-1 (GLP-1), an incretin hormone, is released in response to food intake. It is unclear how meals high in protein (HP) and monounsaturated fat (HMF) affect GLP-1 response.

Purpose

To examine the effect of a HP versus a HMF meal on GLP-1 response.

Methods

Twenty-four overweight/obese participants consumed two meals (HP: 31.9 % energy from protein; HMF: 35.2 % fat and 20.7 % monounsaturated fat) in a random order. Both meals contained the same energy and carbohydrate content. GLP-1, insulin, glucagon, C-peptide, and glucose were assessed from blood drawn in the fasting and postprandial states. The effect of meal condition on hormone and glucose responses and appetite ratings were assessed by repeated measures analysis.

Results

Statistically significant (p < 0.01) time by meal condition effect was observed on active GLP-1, total GLP-1, insulin, C-peptide, and glucagon, but not glucose (p = 0.83). Area under the curve was significantly higher during the HP versus the HMF meal conditions for active GLP-1 (23.7 %; p = 0.0007), total GLP-1 (12.2 %; p < 0.0001), insulin (54.4 %; p < 0.0001), C-peptide (14.8 %; p < 0.0001), and glucagon (40.7 %; p < 0.0001). Blood glucose was not different between the HP versus HMF conditions (−4.8 %; p = 0.11). Insulin sensitivity was higher during the HMF versus HP conditions (Matsuda index mean difference: 16.3 %; p = 0.007). Appetite ratings were not different by meal condition.

Conclusions

GLP-1 and insulin responses were higher during the HP condition. However, no difference was found in blood glucose between conditions, and insulin sensitivity was higher during the HMF condition, indicating that a HMF meal may be optimal at regulating blood glucose in overweight/obese individuals without type 2 diabetes.

Keywords

High-monounsaturated fat meal High-protein meal Meal composition Glucagon-like peptide-1 Insulin Obesity 

Notes

Acknowledgments

This study was funded by the TCU Invests in Scholarship grant. The authors would like to acknowledge Manall Jaffery, Alex Villanueva, Shane Jenke, Justin Repshas, Leighsa Brace, Henry Aleck, Aaron Caldwell, and Elizabeth Sanders for helping with some data collection and/or blood analysis.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117(1):13–23. doi: 10.1172/JCI30227 CrossRefGoogle Scholar
  2. 2.
    Karhunen LJ, Juvonen KR, Huotari A, Purhonen AK, Herzig KH (2008) Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept 149(1–3):70–78. doi: 10.1016/j.regpep.2007.10.008 CrossRefGoogle Scholar
  3. 3.
    Vilsboll T, Holst JJ (2004) Incretins, insulin secretion and type 2 diabetes mellitus. Diabetologia 47(3):357–366. doi: 10.1007/s00125-004-1342-6 CrossRefGoogle Scholar
  4. 4.
    Meyer-Gerspach AC, Wolnerhanssen B, Beglinger B, Nessenius F, Napitupulu M, Schulte FH, Steinert RE, Beglinger C (2014) Gastric and intestinal satiation in obese and normal weight healthy people. Physiol Behav 129:265–271. doi: 10.1016/j.physbeh.2014.02.043 CrossRefGoogle Scholar
  5. 5.
    Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ (2001) Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 50(3):609–613CrossRefGoogle Scholar
  6. 6.
    Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR (2015) Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38(1):140–149. doi: 10.2337/dc14-2441 CrossRefGoogle Scholar
  7. 7.
    Lejeune MP, Westerterp KR, Adam TC, Luscombe-Marsh ND, Westerterp-Plantenga MS (2006) Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber. Am J Clin Nutr 83(1):89–94Google Scholar
  8. 8.
    Belza A, Ritz C, Sorensen MQ, Holst JJ, Rehfeld JF, Astrup A (2013) Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety. Am J Clin Nutr 97(5):980–989. doi: 10.3945/ajcn.112.047563 CrossRefGoogle Scholar
  9. 9.
    Beysen C, Karpe F, Fielding BA, Clark A, Levy JC, Frayn KN (2002) Interaction between specific fatty acids, GLP-1 and insulin secretion in humans. Diabetologia 45(11):1533–1541. doi: 10.1007/s00125-002-0964-9 CrossRefGoogle Scholar
  10. 10.
    Ryan AT, Luscombe-Marsh ND, Saies AA, Little TJ, Standfield S, Horowitz M, Feinle-Bisset C (2013) Effects of intraduodenal lipid and protein on gut motility and hormone release, glycemia, appetite, and energy intake in lean men. Am J Clin Nutr 98(2):300–311. doi: 10.3945/ajcn.113.061333 CrossRefGoogle Scholar
  11. 11.
    Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, Herzog H, Le Roux CW, Thomas EL, Bell JD, Withers DJ (2006) Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab 4(3):223–233. doi: 10.1016/j.cmet.2006.08.001 CrossRefGoogle Scholar
  12. 12.
    van der Klaauw AA, Keogh JM, Henning E, Trowse VM, Dhillo WS, Ghatei MA, Farooqi IS (2013) High protein intake stimulates postprandial GLP1 and PYY release. Obesity 21(8):1602–1607. doi: 10.1002/oby.20154 CrossRefGoogle Scholar
  13. 13.
    WHO Expert Consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403):157–163. doi: 10.1016/S0140-6736(03)15268-3 CrossRefGoogle Scholar
  14. 14.
    Inoue S, Zimmet P, Caterson I, Chunming C, Ikeda Y et al (2000) The Asia-Pacific perspective: redefining obesity and its treatment. Health Communications Australia Pty Limited, Sydney, p 56Google Scholar
  15. 15.
    Brennan IM, Feltrin KL, Nair NS, Hausken T, Little TJ, Gentilcore D, Wishart JM, Jones KL, Horowitz M, Feinle-Bisset C (2009) Effects of the phases of the menstrual cycle on gastric emptying, glycemia, plasma GLP-1 and insulin, and energy intake in healthy lean women. Am J Physiol Gastrointest Liver Physiol 297(3):G602–G610. doi: 10.1152/ajpgi.00051.2009 CrossRefGoogle Scholar
  16. 16.
    Coulston AM, Boushey CJ (2008) Nutrition in the prevention and treatment of disease, 2nd edn. Elsevier Academic Press, BurlingtonGoogle Scholar
  17. 17.
    Flint A, Raben A, Blundell JE, Astrup A (2000) Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord 24(1):38–48CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Matsuda M, DeFronzo RA (1999) Insulin sensitivity obtained from oral glucose tolerance testing. Diabetes Care 22(9):1462–1470CrossRefGoogle Scholar
  20. 20.
    Chen Q, Reimer RA (2009) Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. Nutrition 25(3):340–349. doi: 10.1016/j.nut.2008.08.012 CrossRefGoogle Scholar
  21. 21.
    Brader L, Holm L, Mortensen L, Thomsen C, Astrup A, Holst JJ, de Vrese M, Schrezenmeir J, Hermansen K (2010) Acute effects of casein on postprandial lipemia and incretin responses in type 2 diabetic subjects. Nutr Metab Cardiovasc Dis 20(2):101–109. doi: 10.1016/j.numecd.2009.03.019 CrossRefGoogle Scholar
  22. 22.
    Billeaud C, Guillet J, Sandler B (1990) Gastric emptying in infants with or without gastro-oesophageal reflux according to the type of milk. Eur J Clin Nutr 44(8):577–583Google Scholar
  23. 23.
    Jakubowicz D, Froy O, Ahren B, Boaz M, Landau Z, Bar-Dayan Y, Ganz T, Barnea M, Wainstein J (2014) Incretin, insulinotropic and glucose-lowering effects of whey protein pre-load in type 2 diabetes: a randomised clinical trial. Diabetologia 57(9):1807–1811. doi: 10.1007/s00125-014-3305-x CrossRefGoogle Scholar
  24. 24.
    Power O, Hallihan A, Jakeman P (2009) Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids 37(2):333–339. doi: 10.1007/s00726-008-0156-0 CrossRefGoogle Scholar
  25. 25.
    Jones AG, Hattersley AT (2013) The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet Med 30(7):803–817. doi: 10.1111/dme.12159 CrossRefGoogle Scholar
  26. 26.
    Samocha-Bonet D, Wong O, Synnott EL, Piyaratna N, Douglas A, Gribble FM, Holst JJ, Chisholm DJ, Greenfield JR (2011) Glutamine reduces postprandial glycemia and augments the glucagon-like peptide-1 response in type 2 diabetes patients. J Nutr 141(7):1233–1238. doi: 10.3945/jn.111.139824 CrossRefGoogle Scholar
  27. 27.
    Linn T, Santosa B, Gronemeyer D, Aygen S, Scholz N, Busch M, Bretzel RG (2000) Effect of long-term dietary protein intake on glucose metabolism in humans. Diabetologia 43(10):1257–1265. doi: 10.1007/s001250051521 CrossRefGoogle Scholar
  28. 28.
    Gentilcore D, Chaikomin R, Jones KL, Russo A, Feinle-Bisset C, Wishart JM, Rayner CK, Horowitz M (2006) Effects of fat on gastric emptying of and the glycemic, insulin, and incretin responses to a carbohydrate meal in type 2 diabetes. J Clin Endocrinol Metab 91(6):2062–2067. doi: 10.1210/jc.2005-2644 CrossRefGoogle Scholar
  29. 29.
    Greenfield JR, Farooqi IS, Keogh JM, Henning E, Habib AM, Blackwood A, Reimann F, Holst JJ, Gribble FM (2009) Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. Am J Clin Nutr 89(1):106–113. doi: 10.3945/ajcn.2008.26362 CrossRefGoogle Scholar
  30. 30.
    Brynes AE, Frost GS, Edwards CM, Ghatei MA, Bloom SR (1998) Plasma glucagon-like peptide-1 (7-36) amide (GLP-1) response to liquid phase, solid phase, and meals of differing lipid composition. Nutrition 14(5):433–436CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Meena Shah
    • 1
    Email author
  • Brian Franklin
    • 1
  • Beverley Adams-Huet
    • 3
  • Joel Mitchell
    • 1
  • Brooke Bouza
    • 1
  • Lyn Dart
    • 2
  • Melody Phillips
    • 1
  1. 1.Department of KinesiologyTexas Christian UniversityFort WorthUSA
  2. 2.Department of Nutritional SciencesTexas Christian UniversityFort WorthUSA
  3. 3.Department of Clinical SciencesUniversity of Texas Southwestern Medical Center at DallasDallasUSA

Personalised recommendations