Advertisement

European Journal of Nutrition

, Volume 56, Issue 3, pp 1017–1024 | Cite as

Independent associations of vitamin D metabolites with anemia in patients referred to coronary angiography: the LURIC study

  • J. B. Ernst
  • A. ZittermannEmail author
  • S. Pilz
  • M. E. Kleber
  • H. Scharnagl
  • V. M. Brandenburg
  • W. König
  • T. B. Grammer
  • W. März
Original Contribution

Abstract

Purpose

Anemia and vitamin D deficiency are both frequent in adult patients. Whether low vitamin D metabolite levels are an independent risk factor for different subtypes of anemia remains to be studied in detail.

Methods

In 3299 patients referred for coronary angiography, we investigated the association of 25-hydroxyvitamin D (25OHD) and 1,25-dihydroxyvitamin D [1,25(OH)2D] with anemia [hemoglobin (Hb) <12.5 g/dl] of specific subtypes.

Results

Compared with patients with 25OHD levels in the adequate range (50–125 nmol/l), patients with deficient 25OHD concentrations (<30 nmol/l; 33.6 % of patients) had 0.6 g/dl lower Hb levels. Hb values were 1.3 g/dl lower in patients with 1,25(OH)2D levels <40 pmol/l (5.4 % of patients), compared with patients in the highest 1,25(OH)2D category (>70 pmol/l). Of the participants, 16.7 % met the criteria for anemia. In multivariate-adjusted regression analyses, the odds ratios for anemia in the lowest 25OHD and 1,25(OH)2D categories were 1.52 (95 % CI 1.15–2.02) and 3.59 (95 % CI 2.33–5.52), compared with patients with 25OHD levels in the adequate range and patients with 1,25(OH)2D levels >70 pmol/l. The probability of anemia was highest in patients with combined 25OHD and 1,25(OH)2D deficiency [multivariable-adjusted odds ratio 5.11 (95 % CI 2.66–9.81)]. Patients with anemia of chronic kidney disease had the highest prevalence of 25OHD deficiency and 1,25(OH)2D concentrations of <40 pmol/l.

Conclusions

Low 25OHD and 1,25(OH)2D concentrations are independently associated with anemia. Patients with poor kidney function are most affected. Interventional trials are warranted to prove whether administration of plain or activated vitamin D can prevent anemia.

Keywords

25-Hydroxyvitamin D 1,25-Dihydroxyvitamin D Anemia subtypes Hemoglobin Coronary angiography 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The LURIC study has been approved by the appropriate ethics committee (ethics committee at the ‘Ärztekammer Rheinland-Pfalz’ [Mainz, Germany]) and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Informed consent was obtained from all individual participants included in the study.

Supplementary material

394_2015_1149_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 kb)

References

  1. 1.
    McLean E, Cogswell M, Egli I et al (2009) Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr 12:444–454CrossRefGoogle Scholar
  2. 2.
    Nissenson AR, Goodnough LT, Dubois RW (2003) Anemia: not just an innocent bystander? Arch Intern Med 163:1400–1404CrossRefGoogle Scholar
  3. 3.
    Pilz S, Dobnig H, Tomaschitz A et al (2012) Low 25-hydroxyvitamin D is associated with increased mortality in female nursing home residents. J Clin Endocrinol Metab 97:E653–E657CrossRefGoogle Scholar
  4. 4.
    Hirani V, Cumming RG, Blyth F et al (2015) Cross-sectional and longitudinal associations between the active vitamin D metabolite (1,25 dihydroxyvitamin D) and haemoglobin levels in older Australian men: the concord health and ageing in men project. Age 37:9749CrossRefGoogle Scholar
  5. 5.
    Perlstein TS, Pande R, Berliner N et al (2011) Vanasse GJ. Prevalence of 25-hydroxyvitamin D deficiency in subgroups of elderly persons with anemia: association with anemia of inflammation. Blood 117:2800–2806CrossRefGoogle Scholar
  6. 6.
    Lee JA, Hwang JS, Hwang IT et al (2015) Low vitamin d levels are associated with both iron deficiency and anemia in children and adolescents. Pediatr Hematol Oncol 32:99–108CrossRefGoogle Scholar
  7. 7.
    Zittermann A, Jungvogel A, Prokop S et al (2011) Vitamin D deficiency is an independent predictor of anemia in end-stage heart failure. Clin Res Cardiol 100:781–788CrossRefGoogle Scholar
  8. 8.
    Zittermann A, Kuhn J, Dreier J et al (2014) Association of 25-hydroxyvitamin D with anemia risk in patients scheduled for cardiac surgery. Int J Lab Hematol 36:29–36CrossRefGoogle Scholar
  9. 9.
    Patel NM, Gutierrez OM, Andress DL et al (2010) Vitamin D deficiency and anemia in early chronic kidney disease. Kidney Int 77:715–720CrossRefGoogle Scholar
  10. 10.
    Ernst JB, Becker T, Kuhn J et al (2015) Independent association of circulating vitamin D metabolites with anemia risk in patients scheduled for cardiac surgery. PLoS ONE 10:e0124751CrossRefGoogle Scholar
  11. 11.
    Sim JJ, Lac PT, Liu IL et al (2010) Vitamin D deficiency and anemia: a cross-sectional study. Ann Hematol 89:447–452CrossRefGoogle Scholar
  12. 12.
    Neves PL, Trivino J, Casaubon F et al (2006) Elderly patients on chronic hemodialysis with hyperparathyroidism: increase of hemoglobin level after intravenous calcitriol. Int Urol Nephrol 38:175–177CrossRefGoogle Scholar
  13. 13.
    Schneider A, Gutjahr-Lengsfeld L, Ritz E et al (2014) Longitudinal assessments of erythropoietin-stimulating agent responsiveness and the association with specific clinical outcomes in dialysis patients. Nephron Clin Pract 128:147–152CrossRefGoogle Scholar
  14. 14.
    Aucella F, Scalzulli RP, Gatta G et al (2003) Calcitriol increases burst-forming unit-erythroid proliferation in chronic renal failure. A synergistic effect with r-HuEpo. Nephron Clin Pract 95:c121–c127CrossRefGoogle Scholar
  15. 15.
    Eloranta JJ, Zair ZM, Hiller C et al (2009) Vitamin D3 and its nuclear receptor increase the expression and activity of the human proton-coupled folate transporter. Mol Pharmacol 76:1062–1071CrossRefGoogle Scholar
  16. 16.
    Masuhara T, Migicovsky BB (1963) Vitamin D and the intestinal absorption of iron and cobalt. J Nutr 80:332–336Google Scholar
  17. 17.
    Jones G, Strugnell SA, DeLuca HF (1998) Current understanding of the molecular actions of vitamin D. Physiol Rev 78:1193–1231Google Scholar
  18. 18.
    Winkelmann BR, Marz W, Boehm BO et al (2001) Rationale and design of the LURIC study—a resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease. Pharmacogenomics 2:S1–S73CrossRefGoogle Scholar
  19. 19.
    Stevens LA, Coresh J, Schmid CH et al (2008) Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis 51:395–406CrossRefGoogle Scholar
  20. 20.
    Ross AC, Manson JE, Abrams SA et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58CrossRefGoogle Scholar
  21. 21.
    Chonchol M, Kendrick J, Targher G (2011) Extra-skeletal effects of vitamin D deficiency in chronic kidney disease. Ann Med 43:273–282CrossRefGoogle Scholar
  22. 22.
    Patel TV, Singh AK (2010) Anemia in chronic kidney disease: new advances. Heart Fail Clin 6:347–357CrossRefGoogle Scholar
  23. 23.
    McClellan W, Aronoff SL, Bolton WK et al (2004) The prevalence of anemia in patients with chronic kidney disease. Curr Med Res Opin 20:1501–1510CrossRefGoogle Scholar
  24. 24.
    Doorenbos CR, van den Born J, Navis G et al (2009) Possible renoprotection by vitamin D in chronic renal disease: beyond mineral metabolism. Nat Rev Nephrol 5:691–700CrossRefGoogle Scholar
  25. 25.
    Petkovich M, Jones G (2011) CYP24A1 and kidney disease. Curr Opin Nephrol Hypertens 20:337–344CrossRefGoogle Scholar
  26. 26.
    Blazsek I, Farabos C, Quittet P et al (1996) Bone marrow stromal cell defects and 1 alpha, 25-dihydroxyvitamin D3 deficiency underlying human myeloid leukemias. Cancer Detect Prev 20:31–42Google Scholar
  27. 27.
    Gallieni M, Kamimura S, Ahmed A et al (1995) Kinetics of monocyte 1 alpha-hydroxylase in renal failure. Am J Physiol 268:F746–F753Google Scholar
  28. 28.
    Ranch D, Zhang MY, Portale AA et al (2011) Fibroblast growth factor 23 regulates renal 1,25-dihydroxyvitamin D and phosphate metabolism via the MAP kinase signaling pathway in Hyp mice. J Bone Miner Res 26:1883–1890CrossRefGoogle Scholar
  29. 29.
    Zittermann A, Kuhn J, Ernst JB et al (2015) 25-hydroxyvitamin d, 1,25-dihydroxyvitamin d and postoperative outcome in cardiac surgery. J Clin Endocrinol Metab 100:72–80CrossRefGoogle Scholar
  30. 30.
    Andress DL (2006) Vitamin D in chronic kidney disease: a systemic role for selective vitamin D receptor activation. Kidney Int 69:33–43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. B. Ernst
    • 1
  • A. Zittermann
    • 1
    Email author
  • S. Pilz
    • 2
    • 3
  • M. E. Kleber
    • 4
  • H. Scharnagl
    • 5
  • V. M. Brandenburg
    • 6
  • W. König
    • 7
  • T. B. Grammer
    • 4
    • 8
  • W. März
    • 4
    • 5
    • 9
  1. 1.Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center North Rhine-WestphaliaRuhr University BochumBad OeynhausenGermany
  2. 2.Department of Internal Medicine, Division of Endocrinology and MetabolismMedical University of GrazGrazAustria
  3. 3.Department of Epidemiology and Biostatistics, EMGO Institute for Health and Care ResearchVU University Medical CenterAmsterdamThe Netherlands
  4. 4.Medical Clinic V (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology) Mannheim Medical FacultyUniversity of HeidelbergMannheimGermany
  5. 5.Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
  6. 6.Department of CardiologyUniversity Hospital of the RWTH AachenAachenGermany
  7. 7.Department of Internal Medicine II – CardiologyUniversity of UlmUlmGermany
  8. 8.Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical FacultyUniversity of HeidelbergMannheimGermany
  9. 9.Synlab AcademySynlab Laboratory Services GmbHMannheimGermany

Personalised recommendations