Advertisement

European Journal of Nutrition

, Volume 56, Issue 3, pp 949–964 | Cite as

Inhibitory effects of Kaempferia parviflora extract on monocyte adhesion and cellular reactive oxygen species production in human umbilical vein endothelial cells

  • Satoru Horigome
  • Izumi Yoshida
  • Shihomi Ito
  • Shuichi Inohana
  • Kei Fushimi
  • Takeshi Nagai
  • Akihiro Yamaguchi
  • Kazuhiro Fujita
  • Toshiya Satoyama
  • Shin-ichi Katsuda
  • Shinobu Suzuki
  • Masatoshi Watai
  • Naoto Hirose
  • Takahiro Mitsue
  • Hitoshi ShirakawaEmail author
  • Michio Komai
Original Contribution

Abstract

Purpose

The rhizome of Kaempferia parviflora (KP) is used in traditional Thai medicine. In this study, we investigated the effects of an ethanol KP extract and two of its components [5,7-dimethoxyflavone (DMF) and 5-hydroxy-3,7,3′,4′-tetramethoxyflavone (TMF)] on monocyte adhesion and cellular reactive oxygen species (ROS) production in human umbilical vein endothelial cells (HUVECs), which provide an in vitro model of events relevant to the development and progression of atherosclerosis.

Methods

RAW264.7 mouse macrophage-like cells were incubated with various concentrations of KP extract or polymethoxyflavonoids and stimulated with lipopolysaccharide prior to measuring nitrite levels in the culture media. Monocyte adhesion was evaluated by measuring the fluorescently labeled human monocytic leukemia THP-1 cells that is attached to tumor necrosis factor-α (TNF-α)-stimulated HUVECs. Cellular ROS production was assessed by measuring cellular antioxidant activity using pyocyanin-stimulated HUVECs.

Results

KP extract and DMF reduced nitrite levels (as indicator of nitric oxide production) in LPS-stimulated RAW264.7 cells and also inhibited THP-1 cell adhesion to HUVECs. These treatments induced mRNA expression of endothelial nitric oxide synthase in TNF-α-stimulated HUVECs and downregulated that of various cell adhesion molecules, inflammatory mediators, and endothelial function-related genes. Angiotensin-converting enzyme activity was inhibited by KP extract in vitro. Furthermore, KP extract, DMF, and TMF inhibited the production of cellular ROS in pyocyanin-stimulated HUVECs.

Conclusion

KP extract, DMF, and TMF showed potential anti-inflammatory and antioxidant effects in these in vitro models, properties that would inhibit the development and progression of atherosclerosis.

Keywords

Kaempferia parviflora HUVECs Cell adhesion Inflammatory mediator Polymethoxyflavonoid Atherosclerosis 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

References

  1. 1.
    Blankenhorn DH, Hodis HN (1993) Atherosclerosis-reversal with therapy. West J Med 159:172–179Google Scholar
  2. 2.
    Hiwatashi K, Kosaka Y, Suzuki N, Hata K, Mukaiyama T, Sakamoto K, Shirakawa H, Komai M (2010) Yamabushitake mushroom (Hericium erinaceus) improved lipid metabolism in mice fed a high-fat diet. Biosci Biotechnol Biochem 74:1447–1451CrossRefGoogle Scholar
  3. 3.
    Shindo A, Tanemura H, Yata K, Hamada K, Shibata M, Umeda Y, Asakura F, Toma N, Sakaida H, Fujisawa T, Taki W, Tomimoto H (2014) Inflammatory biomarkers in atherosclerosis: pentraxin 3 can become a novel marker of plaque vulnerability. PLoS One 9:e100045CrossRefGoogle Scholar
  4. 4.
    Jia C, Xiong M, Wang P, Cui J, Du X, Yang Q, Wang W, Chen Y, Zhang T (2014) Notoginsenoside R1 attenuates atherosclerotic lesions in apoE deficient mouse model. PLoS One 9:e99849CrossRefGoogle Scholar
  5. 5.
    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143CrossRefGoogle Scholar
  6. 6.
    Yoshida M (2003) Potential role of statins in inflammation and atherosclerosis. J Atheroscler Thromb 10:140–144CrossRefGoogle Scholar
  7. 7.
    Takano-Ishikawa Y, Goto M, Yamaki K (2004) Analysis of leukocyte rolling and migration—using inhibitors in the undisturbed microcirculation of the rat mesentery—on inflammatory stimulation. Mediators Inflamm 13:33–37CrossRefGoogle Scholar
  8. 8.
    Cho YS, Kim CH, Ha TS, Lee SJ, Ahn HY (2003) Ginsenoside Rg2 inhibits lipopolysaccharide-induced adhesion molecule expression in human umbilical vein endothelial cell. Korean J Physiol Pharmacol 17:133–137CrossRefGoogle Scholar
  9. 9.
    Tewtrakul S, Subhadhirasakul S (2008) Effects of compounds from Kaempferia parviflora on nitric oxide, prostaglandin E2 and tumor necrosis factor-alpha productions in RAW264.7 macrophage cells. J Ethnopharmacol 120:81–84CrossRefGoogle Scholar
  10. 10.
    Horigome S, Yoshida I, Tsuda A, Harada T, Yamaguchi A, Yamazaki K, Inohana S, Isagawa S, Kibune N, Satoyama T, Katsuda S, Suzuki S, Watai M, Hirose N, Mitsue T, Shirakawa H, Komai M (2014) Identification and evaluation of anti-inflammatory compounds from Kaempferia parviflora. Biosci Biotechnol Biochem 78:851–860CrossRefGoogle Scholar
  11. 11.
    Huang N, Hauck C, Yum MY, Rizshsky L, Widrlechner MP, McCoy JA, Murphy PA, Dixon PM, Nikolau BJ, Birt DF (2009) Rosmarinic acid in Prunella vulgaris ethanol extract inhibits lipopolysaccharide-induced prostaglandin E2 and nitric oxide in RAW 264.7 mouse macrophages. J Agric Food Chem 57:10579–10589CrossRefGoogle Scholar
  12. 12.
    Ohsaki Y, Shirakawa H, Miura A, Giriwono PE, Sato S, Ohashi A, Iribe M, Goto T, Komai M (2010) Vitamin K suppresses the lipopolysaccharide-induced expression of inflammatory cytokines in cultured macrophage-like cells via the inhibition of the activation of nuclear factor κB through the repression of IKKα/β phosphorylation. J Nutr Biochem 21:1120–1126CrossRefGoogle Scholar
  13. 13.
    Lee HS, Koo YC, Suh HJ, Kim KY, Lee KW (2010) Preventive effects of chebulic acid isolated from Terminalia chebula on advanced glycation end product-induced endothelial cell dysfunction. J Ethnopharmacol 131:567–574CrossRefGoogle Scholar
  14. 14.
    Nakano D, Ogura K, Miyakoshi M, Ishii F, Kawanishi H, Kurumazuka D, Kwak C, Ikemura K, Takaoka M, Moriguchi S, Iino T, Kusumoto A, Asami S, Shibata H, Kiso Y, Matsumura Y (2006) Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats. Biosci Biotechnol Biochem 70:1118–1126CrossRefGoogle Scholar
  15. 15.
    Asikin Y, Takahashi M, Mishima T, Mizu M, Takara K, Wada K (2013) Antioxidant activity of sugarcane molasses against 2,2ʹ-azobis(2-amidinopropane) dihydrochloride-induced peroxyl radicals. Food Chem 141:466–472CrossRefGoogle Scholar
  16. 16.
    Schwarzer C, Fischer H, Kim EJ, Barber KJ, Mills AD, Kurth MJ, Gruenert DC, Suh JH, Machen TE, Illek B (2008) Oxidative stress by pyocyanin impairs CFTR Cl(−) transport in human bronchial epithelial cells. Free Radic Biol Med 45:1653–1662CrossRefGoogle Scholar
  17. 17.
    Han JM, Jin YY, Kim HY, Park KH, Lee WS, Jeong TS (2010) Lavandulyl flavonoids from Sophora flavescens suppress lipopolysaccharide-induced activation of nuclear factor-κB and mitogen-activated protein kinases in RAW264.7 cells. Biol Pharm Bull 33:1019–1023CrossRefGoogle Scholar
  18. 18.
    Kao ES, Hsu JD, Wang CJ, Yang SH, Cheng SY, Lee HJ (2009) Polyphenols extracted from Hibiscus sabdariffa L. inhibited lipopolysaccharide-induced inflammation by improving antioxidative conditions and regulating cyclooxygenase-2 expression. Biosci Biotechnol Biochem 73:385–390CrossRefGoogle Scholar
  19. 19.
    Moon JY, Yang EJ, Kim SS, Kang JY, Kim GO, Lee NH, Hyun CG (2011) Sasa quelpaertensis phenylpropanoid derivative suppresses lipopolysaccharide-induced nitric oxide synthase and cyclo-oxygenase-2 expressions in RAW 264.7 cells. Yakugaku Zasshi 131:961–967CrossRefGoogle Scholar
  20. 20.
    Sae-wong C, Tansakul P, Tewtrakul S (2009) Anti-inflammatory mechanism of Kaempferia parviflora in murine macrophage cells (RAW 264.7) and in experimental animals. J Ethnopharmacol 124:576–580CrossRefGoogle Scholar
  21. 21.
    Inoue K, Kobayashi M, Yano K, Miura M, Izumi A, Mataki C, Doi T, Hamakubo T, Reid PC, Hume DA, Yoshida M, Aird WC, Kodama T, Minami T (2006) Histone deacetylase inhibitor reduces monocyte adhesion to endothelium through the suppression of vascular cell adhesion molecule-1 expression. Arterioscler Thromb Vasc Biol 26:2652–2659CrossRefGoogle Scholar
  22. 22.
    Namiki M, Kawashima S, Yamashita T, Ozaki M, Hirase T, Ishida T, Inoue N, Hirata K, Matsukawa A, Morishita R, Kaneda Y, Yokoyama M (2002) Local overexpression of monocyte chemoattractant protein-1 at vessel wall induces infiltration of macrophages and formation of atherosclerotic lesion synergism with hypercholesterolemia. Arterioscler Thromb Vasc Biol 22:115–120CrossRefGoogle Scholar
  23. 23.
    Brandal S, Blake CM, Sullenger BA, Fortenberry YM (2011) Effects of plasminogen activator inhibitor-1-specific RNA aptamers on cell adhesion, motility, and tube formation. Nucl Acid Ther 21:373–381CrossRefGoogle Scholar
  24. 24.
    Tang SY, Monslow J, Todd L, Lawson J, Puré E, FitzGerald GA (2014) Cyclooxygenase-2 in endothelial and vascular smooth muscle cells restrains atherogenesis in hyperlipidemic mice. Circulation 129:1761–1769CrossRefGoogle Scholar
  25. 25.
    Hermenegildo C, Oviedo PJ, García-Pérez MA, Tarín JJ, Cano A (2005) Effects of phytoestrogens genistein and daidzein on prostacyclin production by human endothelial cells. J Pharmacol Exp Ther 315:722–728CrossRefGoogle Scholar
  26. 26.
    Guo AJ, Choi RC, Zheng KY, Chen VP, Dong TT, Wang ZT, Vollmer G, Lau DT, Tsim KW (2012) Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling. Chin Med 7:10CrossRefGoogle Scholar
  27. 27.
    Wattanapitayakul SK, Suwatronnakorn M, Chularojmontri L, Herunsalee A, Niumsakul S, Charuchongkolwongse S, Chansuvanich N (2007) Kaempferia parviflora ethanolic extract promoted nitric oxide production in human umbilical vein endothelial cells. J Ethnopharmacol 110:559–562CrossRefGoogle Scholar
  28. 28.
    Yoshizumi M, Perrella MA, Burnett JC Jr, Lee ME (1993) Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 73:205–209CrossRefGoogle Scholar
  29. 29.
    Soehnlein O, Schmeisser A, Cicha I, Reiss C, Ulbrich H, Lindbom L, Daniel WG, Garlichs CD (2005) ACE inhibition lowers angiotensin-II-induced monocyte adhesion to HUVEC by reduction of p65 translocation and AT1 expression. J Vasc Res 42:399–407CrossRefGoogle Scholar
  30. 30.
    Hidalgo M, Martin-Santamaria S, Recio I, Sanchez-Moreno C, de Pascual-Teresa B, Rimbach G, de Pascual-Teresa S (2012) Potential anti-inflammatory, anti-adhesive, anti/estrogenic, and angiotensin-converting enzyme inhibitory activities of anthocyanins and their gut metabolites. Genes Nutr 7:295–306CrossRefGoogle Scholar
  31. 31.
    Zapolska-Downar D, Zapolski-Downar A, Naruszewicz M, Siennicka A, Krasnodebska B, Kołdziej B (2002) Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes. Life Sci 71:2897–2908CrossRefGoogle Scholar
  32. 32.
    Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38CrossRefGoogle Scholar
  33. 33.
    Li J, Shah AM (2001) Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase. Cardiovasc Res 52:477–486CrossRefGoogle Scholar
  34. 34.
    Liu JS, Zhao ML, Brosnan CF, Lee SC (2001) Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am J Pathol 158:2057–2066CrossRefGoogle Scholar
  35. 35.
    Zhang J, Schmidt J, Ryschich E, Mueller-Schilling M, Schumacher H, Allenberg JR (2003) Inducible nitric oxide synthase is present in human abdominal aortic aneurysm and promotes oxidative vascular injury. J Vasc Surg 38:360–367CrossRefGoogle Scholar
  36. 36.
    Gu L, Bai W, Li S, Zhang Y, Han Y, Gu Y, Meng G, Xie L, Wang J, Xiao Y, Shan L, Zhou S, Wei L, Ferro A, Ji Y (2013) Celastrol prevents atherosclerosis via inhibiting LOX-1 and oxidative stress. PLoS One 8:e65477CrossRefGoogle Scholar
  37. 37.
    Greaves DR, Gordon S (2005) Recent insights into the biology of macrophage scavenger receptors. J Lipid Res 46:11–20CrossRefGoogle Scholar
  38. 38.
    Li DY, Zhang YC, Philips MI, Sawamura T, Mehta JL (1999) Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ Res 84:1043–1049CrossRefGoogle Scholar
  39. 39.
    Grote K, Drexler H, Schieffer B (2004) Renin-angiotensin system and atherosclerosis. Nephrol Dial Transplant 19:770–773CrossRefGoogle Scholar
  40. 40.
    Oszajca K, Bieniasz M, Brown G, Swiatkowska M, Bartkowiak J, Szemraj J (2008) Effect of oxidative stress on the expression of t-PA, u-PA, u-PAR, and PAI-1 in endothelial cells. Biochem Cell Biol 86:477–486CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Satoru Horigome
    • 1
    • 2
  • Izumi Yoshida
    • 2
  • Shihomi Ito
    • 2
  • Shuichi Inohana
    • 2
  • Kei Fushimi
    • 2
  • Takeshi Nagai
    • 2
  • Akihiro Yamaguchi
    • 2
    • 3
  • Kazuhiro Fujita
    • 2
  • Toshiya Satoyama
    • 2
    • 4
  • Shin-ichi Katsuda
    • 2
  • Shinobu Suzuki
    • 2
  • Masatoshi Watai
    • 2
  • Naoto Hirose
    • 5
  • Takahiro Mitsue
    • 6
  • Hitoshi Shirakawa
    • 1
    Email author
  • Michio Komai
    • 1
  1. 1.Laboratory of Nutrition, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
  2. 2.Japan Food Research LaboratoriesTamaJapan
  3. 3.Department of Food Science and Human WellnessRakuno Gakuen UniversityEbetsuJapan
  4. 4.Research and Development OfficeKubara Honke Shokuhin Co., Ltd.Kasuya-gunJapan
  5. 5.Okinawa Prefectural Agricultural Research CenterItomanJapan
  6. 6.Department of Bioresources EngineeringOkinawa National College of TechnologyNagoJapan

Personalised recommendations