Skip to main content

Advertisement

Log in

Taurine supplementation regulates Iκ-Bα protein expression in adipose tissue and serum IL-4 and TNF-α concentrations in MSG obesity

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Obesity is usually associated with low-grade inflammation, which impairs insulin action. The amino acid, taurine (TAU), regulates glucose homeostasis and lipid metabolism and presents anti-inflammatory actions. Here, we evaluated whether inflammatory markers are altered in the serum and retroperitoneal adipose tissue of monosodium glutamate (MSG) obese rats, supplemented or not with TAU.

Methods

Male Wistar rats received subcutaneous injections of MSG (4 mg/kg body weight/day, MSG group) or hypertonic saline (CTL) during the first 5 days of life. From 21 to 120 days of age, half of each of the MSG and CTL groups received 2.5 % TAU in their drinking water (CTAU and MTAU).

Results

At 120 days of age, MSG rats were obese and hyperinsulinemic. TAU supplementation reduced fat deposition without affecting insulinemia in MTAU rats. MSG rats presented increased pIκ-Bα/Iκ-Bα protein expression in the retroperitoneal adipose tissue. TAU supplementation decreased the ratio of pIκ-Bα/Iκ-Bα protein, possibly contributing to the increased Iκ-Bα content in MTAU adipose tissue. Furthermore, MSG obesity or supplementation did not alter TNF-α, IL-1β or IL-6 content in adipose tissue. In contrast, MSG rats presented lower serum TNF-α, IL-4 and IL-10 concentrations, and these alterations were prevented by TAU treatment.

Conclusion

MSG obesity in rats was not associated with alterations in pro-inflammatory markers in retroperitoneal fat stores; however, reductions in the serum concentrations of anti-inflammatory cytokines and of TNF-α were observed. TAU treatment decreased adiposity, and this effect was associated with the normalization of circulating TNF-α and IL-4 concentrations in MTAU rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Trujillo ME, Scherer PE (2006) Adipose tissue-derived factors: impact on health and disease. Endocr Rev 27:762–778

    Article  CAS  Google Scholar 

  2. Wajchenberg BL (2000) Tecido Adiposo como Glândula Endócrina. Arquivos Brasileiros de Endocrinologia & Metabologia 44(1):13–20

  3. Leggate M, Carter WG, Evans MJ, Vennard RA, Sribala-Sundaram S, Nimmo MA (2012) Determination of inflammatory and prominent proteomic changes in plasma and adipose tissue after high-intensity intermittent training in overweight and obese males. J Appl Physiol (1985) 112:1353–1360

    Article  CAS  Google Scholar 

  4. Yamakawa T, Tanaka S, Yamakawa Y, Kiuchi Y, Isoda F, Kawamoto S, Okuda K, Sekihara H (1995) Augmented production of tumor necrosis factor-alpha in obese mice. Clin Immunol Immunopathol 75:51–56

    Article  CAS  Google Scholar 

  5. Pickup JC, Chusney GD, Thomas SM, Burt D (2000) Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes. Life Sci 67:291–300

    Article  CAS  Google Scholar 

  6. Roman-Ramos R, Almanza-Perez JC, Garcia-Macedo R, Blancas-Flores G, Fortis-Barrera A, Jasso EI, Garcia-Lorenzana M, Campos-Sepulveda AE, Cruz M, Alarcon-Aguilar FJ (2011) Monosodium glutamate neonatal intoxication associated with obesity in adult stage is characterized by chronic inflammation and increased mRNA expression of peroxisome proliferator-activated receptors in mice. Basic Clin Pharmacol Toxicol 108:406–413

    Article  CAS  Google Scholar 

  7. Trajcevski KE, O’Neill HM, Wang DC, Thomas MM, Al-Sajee D, Steinberg GR, Ceddia RB, Hawke TJ (2013) Enhanced lipid oxidation and maintenance of muscle insulin sensitivity despite glucose intolerance in a diet-induced obesity mouse model. PLoS One 8:e71747

    Article  CAS  Google Scholar 

  8. Haase J, Weyer U, Immig K, Kloting N, Bluher M, Eilers J, Bechmann I, Gericke M (2014) Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia 57:562–571

    Article  CAS  Google Scholar 

  9. Schmid JA, Birbach A (2008) IkappaB kinase beta (IKKbeta/IKK2/IKBKB)–a key molecule in signaling to the transcription factor NF-kappaB. Cytokine Growth Factor Rev 19:157–165

    Article  CAS  Google Scholar 

  10. Park YS, Lillehoj EP, Kato K, Park CS, Kim KC (2012) PPARgamma inhibits airway epithelial cell inflammatory response through a MUC1-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 302:L679–L687

    Article  CAS  Google Scholar 

  11. Lira FS, Yamashita AS, Rosa JC, Koyama CH, Caperuto EC, Batista ML Jr, Seelaender MC (2012) Exercise training decreases adipose tissue inflammation in cachectic rats. Horm Metab Res 44:91–98

    Article  CAS  Google Scholar 

  12. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  CAS  Google Scholar 

  13. Chae GN, Kwak SJ (2003) NF-kappaB is involved in the TNF-alpha induced inhibition of the differentiation of 3T3-L1 cells by reducing PPARgamma expression. Exp Mol Med 35:431–437

    Article  CAS  Google Scholar 

  14. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  CAS  Google Scholar 

  15. Morse D, Pischke SE, Zhou Z, Davis RJ, Flavell RA, Loop T, Otterbein SL, Otterbein LE, Choi AM (2003) Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J Biol Chem 278:36993–36998

    Article  CAS  Google Scholar 

  16. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    CAS  Google Scholar 

  17. Tsuboyama-Kasaoka N, Shozawa C, Sano K, Kamei Y, Kasaoka S, Hosokawa Y, Ezaki O (2006) Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. Endocrinology 147:3276–3284

    Article  CAS  Google Scholar 

  18. Nardelli TR, Ribeiro RA, Balbo SL, Vanzela EC, Carneiro EM, Boschero AC, Bonfleur ML (2011) Taurine prevents fat deposition and ameliorates plasma lipid profile in monosodium glutamate-obese rats. Amino Acids 41:901–908

    Article  CAS  Google Scholar 

  19. Chang YY, Chou CH, Chiu CH, Yang KT, Lin YL, Weng WL, Chen YC (2011) Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit. J Agric Food Chem 59:450–457

    Article  CAS  Google Scholar 

  20. Gentile CL, Nivala AM, Gonzales JC, Pfaffenbach KT, Wang D, Wei Y, Jiang H, Orlicky DJ, Petersen DR, Pagliassotti MJ, Maclean KN (2011) Experimental evidence for therapeutic potential of taurine in the treatment of nonalcoholic fatty liver disease. Am J Physiol Regul Integr Comp Physiol 301:R1710–R1722

    Article  CAS  Google Scholar 

  21. Carneiro EM, Latorraca MQ, Araujo E, Beltra M, Oliveras MJ, Navarro M, Berna G, Bedoya FJ, Velloso LA, Soria B, Martin F (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20:503–511

    Article  CAS  Google Scholar 

  22. Ribeiro RA, Bonfleur ML, Amaral AG, Vanzela EC, Rocco SA, Boschero AC, Carneiro EM (2009) Taurine supplementation enhances nutrient-induced insulin secretion in pancreatic mice islets. Diabetes Metab Res Rev 25:370–379

    Article  CAS  Google Scholar 

  23. Marcinkiewicz J, Mak M, Bobek M, Biedron R, Bialecka A, Koprowski M, Kontny E, Maslinski W (2005) Is there a role of taurine bromamine in inflammation? Interactive effects with nitrite and hydrogen peroxide. Inflamm Res 54:42–49

    Article  CAS  Google Scholar 

  24. Marcinkiewicz J, Kurnyta M, Biedron R, Bobek M, Kontny E, Maslinski W (2006) Anti-inflammatory effects of taurine derivatives (taurine chloramine, taurine bromamine, and taurolidine) are mediated by different mechanisms. Adv Exp Med Biol 583:481–492

    Article  CAS  Google Scholar 

  25. Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46:7–20

    Article  CAS  Google Scholar 

  26. Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721

    Article  CAS  Google Scholar 

  27. Olney JW, Adamo NJ, Ratner A (1971) Monosodium glutamate effects. Science 172:294

    Article  CAS  Google Scholar 

  28. Alarcon-Aguilar FJ, Almanza-Perez J, Blancas G, Angeles S, Garcia-Macedo R, Roman R, Cruz M (2008) Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice. Eur J Pharmacol 599:152–158

    Article  CAS  Google Scholar 

  29. Patil S, Prakash T, Kotresha D, Rao NR, Pandy N (2011) Antihyperlipidemic potential of Cedrus deodara extracts in monosodium glutamate induced obesity in neonatal rats. Indian J Pharmacol 43:644–647

    Google Scholar 

  30. Hirata AE, Alvarez-Rojas F, Carvalheira JB, Carvalho CR, Dolnikoff MS, Abdalla Saad MJ (2003) Modulation of IR/PTP1B interaction and downstream signaling in insulin sensitive tissues of MSG-rats. Life Sci 73:1369–1381

    Article  CAS  Google Scholar 

  31. Balbo SL, Grassiolli S, Ribeiro RA, Bonfleur ML, Gravena C, Brito Mdo N, Andreazzi AE, Mathias PC, Torrezan R (2007) Fat storage is partially dependent on vagal activity and insulin secretion of hypothalamic obese rat. Endocrine 31:142–148

    Article  CAS  Google Scholar 

  32. Matysková R, Maletínská L, Maixnerová J, Pirník Z, Kiss A, Zelezná B (2008) Comparison of the obesity phenotypes related to monosodium glutamate effect on arcuate nucleus and/or the high fat diet feeding in C57BL/6 and NMRI mice. Physiol Res 57:727–734

    Google Scholar 

  33. Zhang N, Huan Y, Huang H, Song GM, Sun SJ, Shen ZF (2010) Atorvastatin improves insulin sensitivity in mice with obesity induced by monosodium glutamate. Acta Pharmacol Sin 31:35–42

    Article  Google Scholar 

  34. Almanza-Perez JC, Alarcon-Aguilar FJ, Blancas-Flores G, Campos-Sepulveda AE, Roman-Ramos R, Garcia-Macedo R, Cruz M (2010) Glycine regulates inflammatory markers modifying the energetic balance through PPAR and UCP-2. Biomed Pharmacother 64:534–540

    Article  CAS  Google Scholar 

  35. Brandelero S Jr, Bonfleur ML, Ribeiro RA, Vanzela EC, Nassar CA, Nassar PO, Balbo SL (2012) Decreased TNF-alpha gene expression in periodontal ligature in MSG-obese rats: a possible protective effect of hypothalamic obesity against periodontal disease? Arch Oral Biol 57:300–306

    Article  CAS  Google Scholar 

  36. Bernardis LL, Patterson BD (1968) Correlation between ‘Lee index’ and carcass fat content in weanling and adult female rats with hypothalamic lesions. J Endocrinol 40:527–528

    Article  CAS  Google Scholar 

  37. Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97

    Article  CAS  Google Scholar 

  38. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801

    Article  CAS  Google Scholar 

  39. Shoelson SE, Herrero L, Naaz A (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132:2169–2180

    Article  CAS  Google Scholar 

  40. Barua M, Liu Y, Quinn MR (2001) Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophages: decreased NF-kappaB activation and IkappaB kinase activity. J Immunol 167:2275–2281

    Article  CAS  Google Scholar 

  41. Chen LF, Greene WC (2004) Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5:392–401

    Article  CAS  Google Scholar 

  42. Chiu YH, Zhao M, Chen ZJ (2009) Ubiquitin in NF-kappaB signaling. Chem Rev 109:1549–1560

    Article  CAS  Google Scholar 

  43. Henkel T, Zabel U, van Zee K, Muller JM, Fanning E, Baeuerle PA (1992) Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit. Cell 68:1121–1133

    Article  CAS  Google Scholar 

  44. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388:548–554

    Article  CAS  Google Scholar 

  45. Hatada EN, Krappmann D, Scheidereit C (2000) NF-kappaB and the innate immune response. Curr Opin Immunol 12:52–58

    Article  CAS  Google Scholar 

  46. Kanayama A, Inoue J, Sugita-Konishi Y, Shimizu M, Miyamoto Y (2002) Oxidation of Ikappa Balpha at methionine 45 is one cause of taurine chloramine-induced inhibition of NF-kappa B activation. J Biol Chem 277:24049–24056

    Article  CAS  Google Scholar 

  47. Barbarroja N, Lopez-Pedrera C, Garrido-Sanchez L, Mayas MD, Oliva-Olivera W, Bernal-Lopez MR, El Bekay R, Tinahones FJ (2012) Progression from high insulin resistance to type 2 diabetes does not entail additional visceral adipose tissue inflammation. PLoS One 7:e48155

    Article  CAS  Google Scholar 

  48. Ahmad R, Al-Mass A, Atizado V, Al-Hubail A, Al-Ghimlas F, Al-Arouj M, Bennakhi A, Dermime S, Behbehani K (2012) Elevated expression of the toll like receptors 2 and 4 in obese individuals: its significance for obesity-induced inflammation. J Inflamm (Lond) 9:48

    Article  CAS  Google Scholar 

  49. Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K (2012) Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep 2:799

    Article  Google Scholar 

  50. Chaparro-Huerta V, Rivera-Cervantes MC, Flores-Soto ME, Gomez-Pinedo U, Beas-Zarate C (2005) Proinflammatory cytokines and apoptosis following glutamate-induced excitotoxicity mediated by p38 MAPK in the hippocampus of neonatal rats. J Neuroimmunol 165:53–62

    Article  CAS  Google Scholar 

  51. Dolnikoff MS, Kater CE, Egami M, de Andrade IS, Marmo MR (1988) Neonatal treatment with monosodium glutamate increases plasma corticosterone in the rat. Neuroendocrinology 48:645–649

    Article  CAS  Google Scholar 

  52. Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS (1995) Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol 15:943–953

    Article  CAS  Google Scholar 

  53. Marcinkiewicz J, Wojas-Pelc A, Walczewska M, Lipko-Godlewska S, Jachowicz R, Maciejewska A, Bialecka A, Kasprowicz A (2008) Topical taurine bromamine, a new candidate in the treatment of moderate inflammatory acne vulgaris: a pilot study. Eur J Dermatol 18:433–439

    CAS  Google Scholar 

  54. Marcinkiewicz J (2009) Taurine bromamine: a new therapeutic option in inflammatory skin diseases. Pol Arch Med Wewn 119:673–676

    CAS  Google Scholar 

  55. Lin S, Hirai S, Yamaguchi Y, Goto T, Takahashi N, Tani F, Mutoh C, Sakurai T, Murakami S, Yu R, Kawada T (2013) Taurine improves obesity-induced inflammatory responses and modulates the unbalanced phenotype of adipose tissue macrophages. Mol Nutr Food Res 57:2155–2165

    Article  CAS  Google Scholar 

  56. Das J, Vasan V, Sil PC (2012) Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol 258:296–308

    Article  CAS  Google Scholar 

  57. Kim C, Cha YN (2014) Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids 46:89–100

    Article  CAS  Google Scholar 

  58. Devi SL, Viswanathan P, Anuradha CV (2010) Regression of liver fibrosis by taurine in rats fed alcohol: effects on collagen accumulation, selected cytokines and stellate cell activation. Eur J Pharmacol 647:161–170

    Article  CAS  Google Scholar 

  59. Kern S, Robertson SA, Mau VJ, Maddocks S (1995) Cytokine secretion by macrophages in the rat testis. Biol Reprod 53:1407–1416

    Article  CAS  Google Scholar 

  60. Ziccardi P, Nappo F, Giugliano G, Esposito K, Marfella R, Cioffi M, D’Andrea F, Molinari AM, Giugliano D (2002) Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over 1 year. Circulation 105:804–809

    Article  CAS  Google Scholar 

  61. Castrogiovanni D, Gaillard RC, Giovambattista A, Spinedi E (2008) Neuroendocrine, metabolic, and immune functions during the acute phase response of inflammatory stress in monosodium L-glutamate-damaged, hyperadipose male rat. Neuroendocrinology 88:227–234

    Article  CAS  Google Scholar 

  62. Tsao CH, Shiau MY, Chuang PH, Chang YH, Hwang J (2014) Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J Lipid Res 55:385–397

    Article  CAS  Google Scholar 

  63. Chang YH, Ho KT, Lu SH, Huang CN, Shiau MY (2012) Regulation of glucose/lipid metabolism and insulin sensitivity by interleukin-4. Int J Obes (Lond) 36:993–998

    Article  CAS  Google Scholar 

  64. Kaminski A, Welters HJ, Kaminski ER, Morgan NG (2010) Human and rodent pancreatic beta-cells express IL-4 receptors and IL-4 protects against beta-cell apoptosis by activation of the PI3 K and JAK/STAT pathways. Biosci Rep 30:169–175

    Article  CAS  Google Scholar 

  65. Limaos EA, Silveira VL, Dolnikoff MS (1988) Inflammatory edema induced by carrageenin in monosodium glutamate-treated rats. Braz J Med Biol Res 21:837–839

    CAS  Google Scholar 

  66. Skultetyova I, Kiss A, Jezova D (1998) Neurotoxic lesions induced by monosodium glutamate result in increased adenopituitary proopiomelanocortin gene expression and decreased corticosterone clearance in rats. Neuroendocrinology 67:412–420

    Article  CAS  Google Scholar 

  67. Perello M, Moreno G, Gaillard RC, Spinedi E (2004) Glucocorticoid-dependency of increased adiposity in a model of hypothalamic obesity. Neuro Endocrinol Lett 25:119–126

    CAS  Google Scholar 

Download references

Acknowledgments

This study forms part of the M.Sc Thesis of Luis Carlos Caetano. We are grateful to Fernanda Michelly Nicoli for animal care and Nicola Conran for editing English. This study was supported by Grants from Conselho Nacional para o Desenvolvimento Científico e Tecnológico (CNPq process number: 480523/2012-7), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Authorship

LCC, TRN, CL, JNS executed the experiments; SLB and MLB contributed to conception and experimental design, data interpretation and manuscript writing; RAR interpreted the data and wrote the manuscript; EMC intellectually contributed and provided materials and reagents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lúcia Bonfleur.

Ethics declarations

Conflict of interest

All authors declared no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caetano, L.C., Bonfleur, M.L., Ribeiro, R.A. et al. Taurine supplementation regulates Iκ-Bα protein expression in adipose tissue and serum IL-4 and TNF-α concentrations in MSG obesity. Eur J Nutr 56, 705–713 (2017). https://doi.org/10.1007/s00394-015-1114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-1114-8

Keywords

Navigation