European Journal of Nutrition

, Volume 56, Issue 2, pp 509–519 | Cite as

Increased dietary levels of α-linoleic acid inhibit mammary tumor growth and metastasis

  • Marianela Vara-Messler
  • Maria E. Pasqualini
  • Andrea Comba
  • Renata Silva
  • Carola Buccellati
  • Annalisa Trenti
  • Lucia Trevisi
  • Aldo R. Eynard
  • Angelo Sala
  • Chiara Bolego
  • Mirta A. Valentich
Original Contribution

Abstract

Objective

The aim of this study was to determine whether α-linolenic acid (ALA ω-3 fatty acid) enriched diet affects growth parameters when applied to a syngeneic model of mammary carcinoma.

Materials and methods

BALB/c mice were divided and fed with: 1) a chia oil diet, rich in ALA or 2) a corn oil diet, rich in linoleic acid (LA ω-6 fatty acid). Mice were subcutaneously inoculated with a tumor cell line LM3, derived from a murine mammary adenocarcinoma.

Results

After 35 days, tumor incidence, weight, volume and metastasis number were lower in the ALA-fed mice, while tumor latency time was higher, and the release of pro-tumor metabolites derived from ω-6 fatty acids decreased in the tumor. Compared to the control group, a lower number of mitosis, a higher number of apoptotic bodies and higher T-lymphocyte infiltration were consistently observed in the ALA group. An ALA-rich diet decreased the estrogen receptor (ER) α expression, a recognized breast cancer promotor while showing an opposite effect on ERβ in tumor lysates.

Conclusion

These data support the anticancer effect of an ALA-enriched diet, which might be used as a dietary strategy in breast cancer prevention.

Keywords

α-linolenic acid (ALA) Chia oil Mammary carcinoma LOXs metabolites Estrogen receptor 

Notes

Acknowledgements

We are indebted to Mr. Ricardo Mattos (Instituto de Biologìa Celular, FCM-UNC) for animal care, Gina Madzzudulli (INICSA-CONICET) for immunohistochemistry, and Andrea Pagetta (PhD) for technical assistance with the microscope analysis (University of Padua). We also thank to Martin Fernandez-Zapico (MD) for critical review. Prof. Mirta A. Valentich acknowledges the support from Ministerio de Ciencia y Tecnología de Córdoba, Argentina (MINCYT) Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECyT-UNC) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Prof. Chiara Bolego and Lucia Trevisi (PhD) acknowledge the support from institutional funding of the University of Padova.

Compliance with ethical standards

Conflict of interest

The author states that there is no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

394_2015_1096_MOESM1_ESM.pdf (24 kb)
Supplementary material 1 (PDF 23 kb)
394_2015_1096_MOESM2_ESM.pdf (1 mb)
Supplementary material 2 (PDF 1047 kb)

References

  1. 1.
    Ronco AL, De Stéfani E, Stoll M (2010) Hormonal and metabolic modulation through nutrition: towards a primary prevention of breast cancer. Breast 19(5):322–332CrossRefGoogle Scholar
  2. 2.
    Lelièvre SA, Weaver CM (2013) Global nutrition research: nutrition and breast cancer prevention as a model. Nutr Rev 71(11):742–752CrossRefGoogle Scholar
  3. 3.
    Eynard AR (2003) Potential of essential fatty acids as natural therapeutic products for human tumors. Nutrition 19(4):386–388CrossRefGoogle Scholar
  4. 4.
    Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510(7503):92–101CrossRefGoogle Scholar
  5. 5.
    Subedi K, Yu HM, Newell M, Weselake RJ, Meesapyodsuk D et al (2015) Stearidonic acid-enriched flax oil reduces the growth of human breast cancer in vitro and in vivo. Breast Cancer Res Treat 149(1):17–29CrossRefGoogle Scholar
  6. 6.
    Cho K, Mabasa L, Fowler AW, Walsh DM, Park CS (2010) Canola oil inhibits breast cancer cell growth in cultures and in vivo and acts synergistically with chemotherapeutic drugs. Lipids 45(9):777–784CrossRefGoogle Scholar
  7. 7.
    Muñoz SE, Silva RA, Lamarque A, Guzman CA, Eynard AR (1995) Protective capability of dietary Zizyphus mistol L. seed oil, rich in 18:3 n-3, on the development of two murine mammary gland adenocarcinomas with high or low metastatic potential. Prostagl Leuk Essent Fat Acids 53:135–138CrossRefGoogle Scholar
  8. 8.
    Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H et al (2004) Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci Biotechnol Biochem 68(1):85–90CrossRefGoogle Scholar
  9. 9.
    Espada CE, Berra MA, Martinez MJ, Eynard AR, Pasqualini ME (2007) Effect of chia oil (Salvia hispanica) rich in w-3 fatty acids on the eicosanoid release, apoptosis and T-lymphocyte tumor infiltration in a murine mammary gland adenocarcinoma. Prostagl Leuk Essent Fat Acids 77:21–28CrossRefGoogle Scholar
  10. 10.
    Gleissman H, Johnsen JI, Kogner P (2010) Omega-3 fatty acids in cancer, the protectors of good and the killers of evil? Exp Cell Res 316(8):1365–1373CrossRefGoogle Scholar
  11. 11.
    Lu IF, Hasio AC, Hu MC, Yang FM, Su HM (2010) Docosahexaenoic acid induces proteasome-dependent degradation of estrogen receptor alpha and inhibits the downstream signaling target in MCF-7 breast cancer cells. J Nutr Biochem 21(6):512–517CrossRefGoogle Scholar
  12. 12.
    Fox EM, Davis RJ, Shupnik MA (2008) ERβ in breast cancer—onlooker, passive player, or active protector? Steroids 73(11):1039–1051CrossRefGoogle Scholar
  13. 13.
    Herynk MH, Fuqua SA (2004) Estrogen receptor mutations in human disease. Endocr Rev 25:869–898CrossRefGoogle Scholar
  14. 14.
    Puricelli L, Colombo LL, Bal de Kier Joffé E, de Lustig ES (1984) Invasiveness in vitro of two mammary adenocarcinoma tumors with different metastasizing ability. Invasio Metast 4:238–246Google Scholar
  15. 15.
    Folch J (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509Google Scholar
  16. 16.
    Pasqualini ME, Berra MA, Calderón RO, Cremonezzi D, Giraudo C et al (2005) Dietary lipids modulate eicosanoid release and apoptosis of cells of a murine lung alveolar carcinoma. Prostagl Leuk Essent Fat Acids 72:235–240CrossRefGoogle Scholar
  17. 17.
    Lowry OH, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  18. 18.
    Toniolo A, Warden EA, Nassi A, Cignarella A, Bolego C (2013) Regulation of SIRT1 in vascular smooth muscle cells from streptozotocin-diabetic rats. PLoS One. 8(5):e65666Google Scholar
  19. 19.
    Hosek J, Toniolo A, Neuwirth O, Bolego C (2013) Prenylated and geranylated flavonoids increase production of reactive oxygen species in mouse macrophages but inhibit the inflammatory response. J Nat Prod 76(9):1586–1591CrossRefGoogle Scholar
  20. 20.
    American Oil Chemists’ Society (1998) Official methods and recommended practices of the AOCS. American Oil Chemists’ Society, ChampaignGoogle Scholar
  21. 21.
    Rathore AS, Kumar S, Konwar R, Makker A, Negi MP et al (2014) CD3+, CD4+ and CD8+ tumour infiltrating lymphocytes (TILs) are predictors of favourable survival outcome in infiltrating ductal carcinoma of breast. Indian J Med Res 140(3):361–369Google Scholar
  22. 22.
    Liu S, Edgerton SM, Moore DH 2nd, Thor AD (2001) Measures of cell turnover (proliferation and apoptosis) and their association with survival in breast cancer. Clin Cancer Res 7(6):1716–1723Google Scholar
  23. 23.
    Corsetto PA, Montorfano G, Zava S, Jovenitti IE, Cremona A et al (2011) Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane. Lipids Health Dis 12(10):73CrossRefGoogle Scholar
  24. 24.
    Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004) Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 79:935–945Google Scholar
  25. 25.
    Corsetto PA, Cremona A, Montorfano G, Jovenitti IE, Orsini F et al (2012) Chemical-physical changes in cell membrane microdomains of breast cancer cells after omega-3 PUFA incorporation. Cell Biochem Biophys 64:45–59CrossRefGoogle Scholar
  26. 26.
    Williams JA, Batten SE, Harris M, Rockett BD, Shaikh SR et al (2012) Docosahexaenoic and eicosapentaenoic acids segregate differently between raft and nonraft domains. Biophys J 103:228–237CrossRefGoogle Scholar
  27. 27.
    Wallace JM (2002) Nutritional and botanical modulation of the inflammatory cascade-eicosanoids, cyclooxygenases, and lipoxygenases-as an adjunct in cancer therapy. Integr Cancer Ther 1:7–37Google Scholar
  28. 28.
    Cabral M, Martín-Venegas R, Moreno JJ (2013) Role of arachidonic acid metabolites on the control of non-differentiated intestinal epithelial cell growth. Int J Biochem Cell Biol 45:1620–1628CrossRefGoogle Scholar
  29. 29.
    Hsi LC, Wilson L, Nixon J, Eling TE (2001) 15-lipoxygenase-1 metabolites down-regulate peroxisome proliferator-activated receptor gamma via the MAPK signaling pathway. J Biol Chem 276(37):34545–34552CrossRefGoogle Scholar
  30. 30.
    Zhang G, Panigrahy D, Mahakian LM, Yang J, Liu JY et al (2013) Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci USA 110(16):6530–6535CrossRefGoogle Scholar
  31. 31.
    Serhan CN (2011) The resolution of inflammation: the devil in the flask and in the details. FASEB J 25:1441–1448CrossRefGoogle Scholar
  32. 32.
    Coronella JA, Spier C, Welch M, Trevor KT, Stopeck AT et al (2002) Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J Immunol 169:1829–1836CrossRefGoogle Scholar
  33. 33.
    Toso JF, Oei C, Oshidari F, Tartaglia J, Paoletti E et al (1996) MAGE-1-specific precursor cytotoxic T-lymphocytes present among tumor-infiltrating lymphocytes from a patient with breast cancer: characterization and antigen-specific activation. Cancer Res 56:16–20Google Scholar
  34. 34.
    Rabinowich H, Cohen R, Bruderman I, Steiner Z, Klajman A (1987) A functional analysis of mononuclear cell infiltrating into tumors: lysis of autologous human tumor cells by cultured infiltrating lymphocytes. Cancer Res 47:173–177Google Scholar
  35. 35.
    Yuan B, Cheng L, Chiang HC, Xu X, Han Y, Su H, Wang L et al (2014) A phosphotyrosine switch determines the antitumor activity of ERβ. J Clin Invest 124(8):3378–3390CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marianela Vara-Messler
    • 1
    • 2
    • 3
  • Maria E. Pasqualini
    • 1
    • 2
  • Andrea Comba
    • 1
    • 2
  • Renata Silva
    • 1
    • 2
  • Carola Buccellati
    • 4
  • Annalisa Trenti
    • 3
  • Lucia Trevisi
    • 3
  • Aldo R. Eynard
    • 1
    • 2
  • Angelo Sala
    • 4
    • 5
  • Chiara Bolego
    • 3
  • Mirta A. Valentich
    • 1
    • 2
  1. 1.Instituto de Investigaciones en Ciencias de la Salud de Córdoba (INICSA-CONICET)Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Instituto de Biología Celular, Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias MédicasUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.Department of Pharmaceutical and Pharmacological SciencesUniversity of PaduaPaduaItaly
  4. 4.Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
  5. 5.Institute of Biomedicine and Molecular ImmunologyItalian National Research CouncilPalermoItaly

Personalised recommendations