Advertisement

European Journal of Nutrition

, Volume 56, Issue 1, pp 261–272 | Cite as

Associations between intake of fish and n-3 long-chain polyunsaturated fatty acids and plasma metabolites related to the kynurenine pathway in patients with coronary artery disease

  • Therese Karlsson
  • Elin Strand
  • Jutta Dierkes
  • Christian A. Drevon
  • Jannike Øyen
  • Øivind Midttun
  • Per M. Ueland
  • Oddrun A. Gudbrandsen
  • Eva Ringdal Pedersen
  • Ottar Nygård
Original Contribution

Abstract

Purpose

Enhanced tryptophan degradation via the kynurenine pathway has been related to several pathological conditions. However, little is known about the effect of diet on individual metabolites of this pathway. We investigated cross-sectional associations between reported intake of fish and omega-3 (n-3) long-chain PUFA (LC-PUFA) and plasma metabolites related to the kynurenine pathway.

Methods

Participants were 2324 individuals with coronary artery disease from the Western Norway B Vitamin Intervention Trial. Fish and n-3 LC-PUFA intakes were assessed using a food frequency questionnaire. Plasma concentrations of tryptophan, kynurenine, kynurenic acid, anthranilic acid, 3-hydroxykynurenine, xanthurenic acid, 3-hydroxyanthranilic acid, neopterin, and kynurenine-to-tryptophan ratio (KTR) were analyzed. Associations were investigated using partial Spearman’s rank correlations and multiple linear regressions.

Results

Median age at inclusion was 62 years (80 % males), and 84 % had stable angina pectoris. Intake of fatty fish and n-3 LC-PUFA was inversely associated with plasma 3-hydroxykynurenine. Consumption of total fish, lean fish, and n-3 LC-PUFA was inversely associated with plasma neopterin. Intake of total fish, fatty fish, and n-3 LC-PUFA was inversely associated with KTR. All these correlations were weak (ρ between −0.12 and −0.06, P < 0.01). In 306 patients with diabetes, lean fish intake was positively associated with plasma 3-hydroxyanthranilic acid (ρ = 0.22, P < 0.001, P for interaction = 0.01), and total fish intake was inversely associated with KTR (ρ = −0.17, P < 0.01, P for interaction = 0.02).

Conclusion

Fish intake was not an important determinant of individual metabolites in the kynurenine pathway. However, some correlations were stronger in patients with diabetes. The inverse associations of fish or n-3 LC-PUFA with neopterin and KTR may suggest a slightly lower IFN-γ-mediated immune activation with a higher intake.

Keywords

Fish intake Omega-3 polyunsaturated fatty acid Neopterin Kynurenine pathway 

Notes

Acknowledgments

We wish to thank Reinhard Seifert for valuable statistical advice. This work was supported by the Norwegian Seafood Research Fund (FHF). The funder had no role in the study design, in analysis or interpretation of data, or in the writing of the manuscript.

Compliance with ethical standards

Conflict of interest

None of the authors reported a conflict of interest.

Supplementary material

394_2015_1077_MOESM1_ESM.pdf (53 kb)
Supplementary material 1 (PDF 52 kb)

References

  1. 1.
    Le Floc’h N, Otten W, Merlot E (2011) Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 41:1195–1205. doi: 10.1007/s00726-010-0752-7 CrossRefGoogle Scholar
  2. 2.
    Stevens CO, Henderson LM (1959) Riboflavin and hepatic kynurenine hydroxylase. J Biol Chem 234:1191–1194Google Scholar
  3. 3.
    Midttun O, Ulvik A, Ringdal Pedersen E, Ebbing M, Bleie O, Schartum-Hansen H, Nilsen RM, Nygard O, Ueland PM (2011) Low plasma vitamin B-6 status affects metabolism through the kynurenine pathway in cardiovascular patients with systemic inflammation. J Nutr 141:611–617. doi: 10.3945/jn.110.133082 CrossRefGoogle Scholar
  4. 4.
    Schroecksnadel K, Frick B, Winkler C, Fuchs D (2006) Crucial role of interferon-gamma and stimulated macrophages in cardiovascular disease. Curr Vasc Pharmacol 4:205–213CrossRefGoogle Scholar
  5. 5.
    Schrocksnadel K, Wirleitner B, Winkler C, Fuchs D (2006) Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 364:82–90. doi: 10.1016/j.cca.2005.06.013 CrossRefGoogle Scholar
  6. 6.
    Theofylaktopoulou D, Midttun O, Ulvik A, Ueland PM, Tell GS, Vollset SE, Nygard O, Eussen SJ (2013) A community-based study on determinants of circulating markers of cellular immune activation and kynurenines: the Hordaland Health Study. Clin Exp Immunol 173:121–130. doi: 10.1111/cei.12092 CrossRefGoogle Scholar
  7. 7.
    Nilsen RM, Bjorke-Monsen AL, Midttun O, Nygard O, Pedersen ER, Ulvik A, Magnus P, Gjessing HK, Vollset SE, Ueland PM (2012) Maternal tryptophan and kynurenine pathway metabolites and risk of preeclampsia. Obstet Gynecol 119:1243–1250. doi: 10.1097/AOG.0b013e318255004e CrossRefGoogle Scholar
  8. 8.
    Zuo H, Tell GS, Vollset SE, Ueland PM, Nygard O, Midttun O, Meyer K, Ulvik A, Eussen SJ (2014) Interferon-gamma-induced inflammatory markers and the risk of cancer: the Hordaland Health Study. Cancer 120:3370–3377. doi: 10.1002/cncr.28869 CrossRefGoogle Scholar
  9. 9.
    Sulo G, Vollset SE, Nygard O, Midttun O, Ueland PM, Eussen SJ, Pedersen ER, Tell GS (2013) Neopterin and kynurenine-tryptophan ratio as predictors of coronary events in older adults, the Hordaland Health Study. Int J Cardiol 168:1435–1440. doi: 10.1016/j.ijcard.2012.12.090 CrossRefGoogle Scholar
  10. 10.
    Oxenkrug G (2013) Insulin resistance and dysregulation of tryptophan-kynurenine and kynurenine-nicotinamide adenine dinucleotide metabolic pathways. Mol Neurobiol 48:294–301. doi: 10.1007/s12035-013-8497-4 CrossRefGoogle Scholar
  11. 11.
    Munipally PK, Agraharm SG, Valavala VK, Gundae S, Turlapati NR (2011) Evaluation of indoleamine 2,3-dioxygenase expression and kynurenine pathway metabolites levels in serum samples of diabetic retinopathy patients. Arch Physiol Biochem 117:254–258. doi: 10.3109/13813455.2011.623705 CrossRefGoogle Scholar
  12. 12.
    Pedersen ER, Tuseth N, Eussen SJ, Ueland PM, Strand E, Svingen GF, Midttun O, Meyer K, Mellgren G, Ulvik A, Nordrehaug JE, Nilsen DW, Nygard O (2015) Associations of plasma kynurenines with risk of acute myocardial infarction in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol 35:455–462. doi: 10.1161/ATVBAHA.114.304674 CrossRefGoogle Scholar
  13. 13.
    Zheng J, Huang T, Yu Y, Hu X, Yang B, Li D (2012) Fish consumption and CHD mortality: an updated meta-analysis of seventeen cohort studies. Public Health Nutr 15:725–737. doi: 10.1017/S1368980011002254 CrossRefGoogle Scholar
  14. 14.
    Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA 296:1885–1899. doi: 10.1001/jama.296.15.1885 CrossRefGoogle Scholar
  15. 15.
    Zhou Y, Tian C, Jia C (2012) Association of fish and n-3 fatty acid intake with the risk of type 2 diabetes: a meta-analysis of prospective studies. Br J Nutr 108:408–417. doi: 10.1017/S0007114512002036 CrossRefGoogle Scholar
  16. 16.
    Wu JH, Micha R, Imamura F, Pan A, Biggs ML, Ajaz O, Djousse L, Hu FB, Mozaffarian D (2012) Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br J Nutr 107:S214–S227. doi: 10.1017/S0007114512001602 CrossRefGoogle Scholar
  17. 17.
    Ebbing M, Bleie O, Ueland PM, Nordrehaug JE, Nilsen DW, Vollset SE, Refsum H, Pedersen EK, Nygard O (2008) Mortality and cardiovascular events in patients treated with homocysteine-lowering B vitamins after coronary angiography: a randomized controlled trial. JAMA 300:795–804. doi: 10.1001/jama.300.7.795 CrossRefGoogle Scholar
  18. 18.
    Andersen LF, Solvoll K, Johansson LR, Salminen I, Aro A, Drevon CA (1999) Evaluation of a food frequency questionnaire with weighed records, fatty acids, and alpha-tocopherol in adipose tissue and serum. Am J Epidemiol 150:75–87CrossRefGoogle Scholar
  19. 19.
    Nes M, Frost Andersen L, Solvoll K, Sandstad B, Hustvedt BE, Lovo A, Drevon CA (1992) Accuracy of a quantitative food frequency questionnaire applied in elderly Norwegian women. Eur J Clin Nutr 46:809–821Google Scholar
  20. 20.
    Den store matvaretabellen (1995) The Norwegian food composition table. National Nutrition Council and The Food Control Authority, Oslo (in Norwegian) Google Scholar
  21. 21.
    Andersen LF, Solvoll K, Drevon CA (1996) Very-long-chain n-3 fatty acids as biomarkers for intake of fish and n-3 fatty acid concentrates. Am J Clin Nutr 64:305–311Google Scholar
  22. 22.
    Andersen LF, Veierod MB, Johansson L, Sakhi A, Solvoll K, Drevon CA (2005) Evaluation of three dietary assessment methods and serum biomarkers as measures of fruit and vegetable intake, using the method of triads. Br J Nutr 93:519–527CrossRefGoogle Scholar
  23. 23.
    Verification SSoB (2002) Biochemical verification of tobacco use and cessation. Nicotine Tob Res 4:149–159. doi: 10.1080/14622200210123581 CrossRefGoogle Scholar
  24. 24.
    Strand E, Pedersen ER, Svingen GF, Schartum-Hansen H, Rebnord EW, Bjorndal B, Seifert R, Bohov P, Meyer K, Hiltunen JK, Nordrehaug JE, Nilsen DW, Berge RK, Nygard O (2013) Dietary intake of n-3 long-chain polyunsaturated fatty acids and risk of myocardial infarction in coronary artery disease patients with or without diabetes mellitus: a prospective cohort study. BMC Med 11:216. doi: 10.1186/1741-7015-11-216 CrossRefGoogle Scholar
  25. 25.
    Midttun O, Hustad S, Ueland PM (2009) Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 23:1371–1379. doi: 10.1002/rcm.4013 CrossRefGoogle Scholar
  26. 26.
    Ueland PM, Midttun O, Windelberg A, Svardal A, Skalevik R, Hustad S (2007) Quantitative profiling of folate and one-carbon metabolism in large-scale epidemiological studies by mass spectrometry. Clin Chem Lab Med 45:1737–1745. doi: 10.1515/CCLM.2007.339 CrossRefGoogle Scholar
  27. 27.
    Koenker R (2005) Quantile regression. Cambridge University Press, New YorkCrossRefGoogle Scholar
  28. 28.
    Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S–1228SGoogle Scholar
  29. 29.
    Hiratsuka C, Fukuwatari T, Sano M, Saito K, Sasaki S, Shibata K (2013) Supplementing healthy women with up to 5.0 g/d of l-tryptophan has no adverse effects. J Nutr 143:859–866. doi: 10.3945/jn.112.173823 CrossRefGoogle Scholar
  30. 30.
    Campbell BM, Charych E, Lee AW, Moller T (2014) Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci 8:12. doi: 10.3389/fnins.2014.00012 CrossRefGoogle Scholar
  31. 31.
    Adkins Y, Kelley DS (2010) Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem 21:781–792. doi: 10.1016/j.jnutbio.2009.12.004 CrossRefGoogle Scholar
  32. 32.
    Calder PC (2014) Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta 1851:469–484. doi: 10.1016/j.bbalip.2014.08.010 CrossRefGoogle Scholar
  33. 33.
    Soyland E, Nenseter MS, Braathen L, Drevon CA (1993) Very long chain n-3 and n-6 polyunsaturated fatty acids inhibit proliferation of human T-lymphocytes in vitro. Eur J Clin Invest 23:112–121CrossRefGoogle Scholar
  34. 34.
    Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R (2006) Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr 83:754–759Google Scholar
  35. 35.
    Gallai V, Sarchielli P, Trequattrini A, Franceschini M, Floridi A, Firenze C, Alberti A, Di Benedetto D, Stragliotto E (1995) Cytokine secretion and eicosanoid production in the peripheral blood mononuclear cells of MS patients undergoing dietary supplementation with n-3 polyunsaturated fatty acids. J Neuroimmunol 56:143–153CrossRefGoogle Scholar
  36. 36.
    Dawczynski C, Massey KA, Ness C, Kiehntopf M, Stepanow S, Platzer M, Grun M, Nicolaou A, Jahreis G (2013) Randomized placebo-controlled intervention with n-3 LC-PUFA-supplemented yoghurt: effects on circulating eicosanoids and cardiovascular risk factors. Clin Nutr 32:686–696. doi: 10.1016/j.clnu.2012.12.010 CrossRefGoogle Scholar
  37. 37.
    Miles EA, Banerjee T, Wells SJ, Calder PC (2006) Limited effect of eicosapentaenoic acid on T-lymphocyte and natural killer cell numbers and functions in healthy young males. Nutrition 22:512–519. doi: 10.1016/j.nut.2005.11.011 CrossRefGoogle Scholar
  38. 38.
    Thies F, Nebe-von-Caron G, Powell JR, Yaqoob P, Newsholme EA, Calder PC (2001) Dietary supplementation with gamma-linolenic acid or fish oil decreases T lymphocyte proliferation in healthy older humans. J Nutr 131:1918–1927Google Scholar
  39. 39.
    Trebble TM, Wootton SA, Miles EA, Mullee M, Arden NK, Ballinger AB, Stroud MA, Burdge GC, Calder PC (2003) Prostaglandin E2 production and T cell function after fish-oil supplementation: response to antioxidant cosupplementation. Am J Clin Nutr 78:376–382Google Scholar
  40. 40.
    Murr C, Winklhofer-Roob BM, Schroecksnadel K, Maritschnegg M, Mangge H, Bohm BO, Winkelmann BR, Marz W, Fuchs D (2009) Inverse association between serum concentrations of neopterin and antioxidants in patients with and without angiographic coronary artery disease. Atherosclerosis 202:543–549. doi: 10.1016/j.atherosclerosis.2008.04.047 CrossRefGoogle Scholar
  41. 41.
    Theofylaktopoulou D, Ulvik A, Midttun O, Ueland PM, Vollset SE, Nygard O, Hustad S, Tell GS, Eussen SJ (2014) Vitamins B2 and B6 as determinants of kynurenines and related markers of interferon-gamma-mediated immune activation in the community-based Hordaland Health Study. Br J Nutr 112:1065–1072. doi: 10.1017/S0007114514001858 CrossRefGoogle Scholar
  42. 42.
    Murr C, Talasz H, Artner-Dworzak E, Schroecksnadel K, Fiegl M, Fuchs D, Denz HA (2007) Inverse association between serum selenium concentrations and parameters of immune activation in patients with cardiac disorders. Clin Chem Lab Med 45:1224–1228. doi: 10.1515/CCLM.2007.264 CrossRefGoogle Scholar
  43. 43.
    Wennberg M, Vessby B, Johansson I (2009) Evaluation of relative intake of fatty acids according to the Northern Sweden FFQ with fatty acid levels in erythrocyte membranes as biomarkers. Public Health Nutr 12:1477–1484. doi: 10.1017/S1368980008004503 CrossRefGoogle Scholar
  44. 44.
    Rylander C, Sandanger TM, Engeset D, Lund E (2014) Consumption of lean fish reduces the risk of type 2 diabetes mellitus: a prospective population based cohort study of Norwegian women. PLoS ONE 9:e89845. doi: 10.1371/journal.pone.0089845 CrossRefGoogle Scholar
  45. 45.
    Totland TH, Mehæs B, Lundberg-Hallén N, Helland-Kigen KM, Lund-Blix NA, Myhre J, Johansen AM, Løken E, Frost Andersen L (2012) Norkost 3. En landsomfattande kostholdsundersøkelse blant menn og kvinner i Norge i alderen 18-70 år, 2010-11. (Norkost 3. A national dietary survey among males and females aged 18–70 years in Norway, 2010–11.). Helsedirektoratet, Oslo, Norway (in Norwegian) Google Scholar
  46. 46.
    Agostoni C, Bresson J-L, Fairweather-Tait S, Flynn A, Golly I, Korhonen H, Lagiou P, Løvik M, Marchelli R, Martin A, Moseley B, Neuhäuser-Berthold M, Przyrembel H, Salminen S, Sanz Y, Strain S, Strobel S, Tetens I, Tomé D, van Loveren H, Verhagen H (2010) Scientific opinion on dietary reference values for fats, including fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J 8:1461. doi: 10.2903/j.efsa.2010.1461 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Therese Karlsson
    • 1
  • Elin Strand
    • 1
  • Jutta Dierkes
    • 2
  • Christian A. Drevon
    • 3
  • Jannike Øyen
    • 4
  • Øivind Midttun
    • 5
  • Per M. Ueland
    • 1
    • 6
  • Oddrun A. Gudbrandsen
    • 2
  • Eva Ringdal Pedersen
    • 1
  • Ottar Nygård
    • 1
    • 7
  1. 1.Department of Clinical Science, Faculty of Medicine and DentistryUniversity of BergenBergenNorway
  2. 2.Department of Clinical Medicine, Faculty of Medicine and DentistryUniversity of BergenBergenNorway
  3. 3.Department of Nutrition, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
  4. 4.National Institute of Nutrition and Seafood ResearchBergenNorway
  5. 5.Bevital ASBergenNorway
  6. 6.Laboratory of Clinical BiochemistryHaukeland University HospitalBergenNorway
  7. 7.Department of Heart DiseaseHaukeland University HospitalBergenNorway

Personalised recommendations