European Journal of Nutrition

, Volume 56, Issue 1, pp 247–260 | Cite as

The impact of MTHFR 677 C/T genotypes on folate status markers: a meta-analysis of folic acid intervention studies

  • Natalie J. Colson
  • Helen L. Naug
  • Elham Nikbakht
  • Ping Zhang
  • Joanna McCormack
Original Contribution

Abstract

Purpose

Methylenetetrahydrofolate reductase (MTHFR) is a key folate pathway enzyme with the T variant of the MTHFR gene increasing the risk of low folate status, particularly coupled with low folate intake. As genetic variability of MTHFR influences folate status, it is important to ensure an adequate intake that overrides genetic effects but minimises any adverse effects. Our aim was to assess the influence of MTHFR genotype on folate status followed by response to supplementation.

Methods

We performed a meta-analysis of ten folate intervention studies to assess the degree to which MTHFR C677T genotype influenced plasma homocysteine and serum folate levels as measures of folate status. We then examined response after supplementation at intake values up to the upper tolerable limit.

Results

The MTHFR 677TT genotype was associated with higher plasma homocysteine (2.7 μmol/L, TT vs. CT/CC; 2.8 μmol/L, TT vs. CC) and lower serum folate (2.5 nmol/L, TT vs. CT/CC; 3.6 nmol/L, TT vs. CC). In two studies, the TT groups had mean plasma Hcy >15 μmol/L. Serum folate levels were >7 nmol/L for all genotype groups. After supplementation of 400 up to 1670 μg DFEs of folic acid or folic acid + fortified foods and/or natural food folates for a minimum of 4 weeks, there were no significant differences in plasma homocysteine levels; however, individuals with the TT genotype had a lower serum folate response to supplementation (7.2 nmol/L, TT vs. CT/CC; 8.7 nmol/L, TT vs. CC).

Conclusions

This meta-analysis confirms observations from observational and intervention studies that MTHFR TT genotype is associated with increased plasma homocysteine and lowered serum folate and less response to short-term supplementation. The results can be used for modelling and guiding personalised intake recommendations for the nutrient folate.

Keywords

Folate Folic acid Homocysteine MTHFR 

Supplementary material

394_2015_1076_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 42 kb)
394_2015_1076_MOESM2_ESM.docx (40 kb)
Supplementary material 2 (DOCX 39 kb)

References

  1. 1.
    Peake JN, Copp AJ, Shawe J (2013) Knowledge and periconceptional use of folic acid for the prevention of neural tube defects in ethnic communities in the United Kingdom: systematic review and meta-analysis. Birth Defects Res A 97(7):444–451. doi:10.1002/bdra.23154 CrossRefGoogle Scholar
  2. 2.
    Sanjoaquin MA, Allen N, Couto E, Roddam AW, Key TJ (2005) Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer 113(5):825–828. doi:10.1002/ijc.20648 CrossRefGoogle Scholar
  3. 3.
    Smach MA, Jacob N, Golmard JL, Charfeddine B, Lammouchi T, Ben Othman L, Dridi H, Bennamou S, Limem K (2011) Folate and homocysteine in the cerebrospinal fluid of patients with Alzheimer’s disease or dementia: a case control study. Eur Neurol 65(5):270–278. doi:10.1159/000326301 CrossRefGoogle Scholar
  4. 4.
    Gilbody S, Lightfoot T, Sheldon T (2007) Is low folate a risk factor for depression? A meta-analysis and exploration of heterogeneity. J Epidemiol Community Health 61(7):631–637. doi:10.1136/jech.2006.050385 CrossRefGoogle Scholar
  5. 5.
    Payne ME, Jamerson BD, Potocky CF, Ashley-Koch AE, Speer MC, Steffens DC (2009) Natural food folate and late-life depression. J Nutr Elder 28(4):348–358. doi:10.1080/01639360903417181 CrossRefGoogle Scholar
  6. 6.
    Wang ZM, Zhou B, Nie ZL, Gao W, Wang YS, Zhao H, Zhu J, Yan JJ, Yang ZJ, Wang LS (2012) Folate and risk of coronary heart disease: a meta-analysis of prospective studies. Nutri Metab Cardiovasc Dis NMCD 22(10):890–899. doi:10.1016/j.numecd.2011.04.011 CrossRefGoogle Scholar
  7. 7.
    Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270(22):2693–2698CrossRefGoogle Scholar
  8. 8.
    Wald DS, Wald NJ, Morris JK, Law M (2006) Folic acid, homocysteine, and cardiovascular disease: judging causality in the face of inconclusive trial evidence. BMJ 333(7578):1114–1117. doi:10.1136/bmj.39000.486701.68 CrossRefGoogle Scholar
  9. 9.
    Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, Wang H, Nordrehaug JE, Arnesen E, Rasmussen K (2006) Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 354(15):1578–1588. doi:10.1056/NEJMoa055227 CrossRefGoogle Scholar
  10. 10.
    Brouwer IA, van Dusseldorp M, Thomas CM, Duran M, Hautvast JG, Eskes TK, Steegers-Theunissen RP (1999) Low-dose folic acid supplementation decreases plasma homocysteine concentrations: a randomized trial. Am J Clin Nutr 69(1):99–104Google Scholar
  11. 11.
    Shirodaria C, Antoniades C, Lee J, Jackson CE, Robson MD, Francis JM, Moat SJ, Ratnatunga C, Pillai R, Refsum H, Neubauer S, Channon KM (2007) Global improvement of vascular function and redox state with low-dose folic acid: implications for folate therapy in patients with coronary artery disease. Circulation 115(17):2262–2270. doi:10.1161/CIRCULATIONAHA.106.679084 CrossRefGoogle Scholar
  12. 12.
    Quinlivan EP, McPartlin J, McNulty H, Ward M, Strain JJ, Weir DG, Scott JM (2002) Importance of both folic acid and vitamin B12 in reduction of risk of vascular disease. Lancet 359(9302):227–228CrossRefGoogle Scholar
  13. 13.
    Mason JB, Dickstein A, Jacques PF, Haggarty P, Selhub J, Dallal G, Rosenberg IH (2007) A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: a hypothesis. Cancer Epidemiol Biomark Prev 16(7):1325–1329. doi:10.1158/1055-9965.EPI-07-0329 CrossRefGoogle Scholar
  14. 14.
    Johnson MA (2007) If high folic acid aggravates vitamin B12 deficiency what should be done about it? Nutr Rev 65(10):451–458Google Scholar
  15. 15.
    Krishnaveni GV, Veena SR, Karat SC, Yajnik CS, Fall CH (2014) Association between maternal folate concentrations during pregnancy and insulin resistance in Indian children. Diabetologia 57(1):110–121. doi:10.1007/s00125-013-3086-7 CrossRefGoogle Scholar
  16. 16.
    Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S, Fisher DJ, Bhat DS, Naik SS, Coyaji KJ, Joglekar CV, Joshi N, Lubree HG, Deshpande VU, Rege SS, Fall CH (2008) Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51(1):29–38. doi:10.1007/s00125-007-0793-y CrossRefGoogle Scholar
  17. 17.
    Bailey RL, Mills JL, Yetley EA, Gahche JJ, Pfeiffer CM, Dwyer JT, Dodd KW, Sempos CT, Betz JM, Picciano MF (2010) Unmetabolized serum folic acid and its relation to folic acid intake from diet and supplements in a nationally representative sample of adults aged ≥60 years in the United States. Am J Clin Nutr 92(2):383–389. doi:10.3945/ajcn.2010.29499 CrossRefGoogle Scholar
  18. 18.
    Obeid R, Kirsch SH, Dilmann S, Klein C, Eckert R, Geisel J, Herrmann W (2015) Folic acid causes higher prevalence of detectable unmetabolized folic acid in serum than B-complex: a randomized trial. Eur J Nutr. doi:10.1007/s00394-015-0916-z Google Scholar
  19. 19.
    Troen AM, Mitchell B, Sorensen B, Wener MH, Johnston A, Wood B, Selhub J, McTiernan A, Yasui Y, Oral E, Potter JD, Ulrich CM (2006) Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women. J Nutr 136(1):189–194Google Scholar
  20. 20.
    Hirsch S, Miranda D, Munoz E, Montoya M, Ronco AM, de la Maza MP, Bunout D (2013) Natural killer cell cytotoxicity is not regulated by folic acid in vitro. Nutrition 29(5):772–776. doi:10.1016/j.nut.2012.10.006 CrossRefGoogle Scholar
  21. 21.
    Lim U, Wang SS, Hartge P, Cozen W, Kelemen LE, Chanock S, Davis S, Blair A, Schenk M, Rothman N, Lan Q (2007) Gene-nutrient interactions among determinants of folate and one-carbon metabolism on the risk of non-Hodgkin lymphoma: NCI-SEER case-control study. Blood 109(7):3050–3059. doi:10.1182/blood-2006-07-034330 Google Scholar
  22. 22.
    Ogino S, Wilson RB (2003) Genotype and haplotype distributions of MTHFR677C > T and 1298A > C single nucleotide polymorphisms: a meta-analysis. J Hum Genet 48(1):1–7. doi:10.1007/s100380300000 CrossRefGoogle Scholar
  23. 23.
    Malinow MR, Nieto FJ, Kruger WD, Duell PB, Hess DL, Gluckman RA, Block PC, Holzgang CR, Anderson PH, Seltzer D, Upson B, Lin QR (1997) The effects of folic acid supplementation on plasma total homocysteine are modulated by multivitamin use and methylenetetrahydrofolate reductase genotypes. Arterioscler Thromb Vasc Biol 17(6):1157–1162CrossRefGoogle Scholar
  24. 24.
    Yang QH, Botto LD, Gallagher M, Friedman JM, Sanders CL, Koontz D, Nikolova S, Erickson JD, Steinberg K (2008) Prevalence and effects of gene-gene and gene-nutrient interactions on serum folate and serum total homocysteine concentrations in the United States: findings from the third National Health and Nutrition Examination Survey DNA Bank. Am J Clin Nutr 88(1):232–246Google Scholar
  25. 25.
    Yadav U, Kumar P, Yadav SK, Mishra OP, Rai V (2014) Polymorphisms in folate metabolism genes as maternal risk factor for neural tube defects: an updated meta-analysis. Metab Brain Dis. doi:10.1007/s11011-014-9575-7 Google Scholar
  26. 26.
    To QG, Chen TT, Magnussen CG, To KG (2013) Workplace physical activity interventions: a systematic review. Am J Health Promot AJHP 27(6):e113–e123. doi:10.4278/ajhp.120425-LIT-222 CrossRefGoogle Scholar
  27. 27.
    Pfeiffer CM, Caudill SP, Gunter EW, Osterloh J, Sampson EJ (2005) Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999-2000. Am J Clin Nutr 82(2):442–450Google Scholar
  28. 28.
    Hickling S, Hung J, Knuiman M, Jamrozik K, McQuillan B, Beilby J, Thompson P (2005) Impact of voluntary folate fortification on plasma homocysteine and serum folate in Australia from 1995 to 2001: a population based cohort study. J Epidemiol Community Health 59(5):371–376. doi:10.1136/jech.2004.027078 CrossRefGoogle Scholar
  29. 29.
    Williams LJ, Mai CT, Edmonds LD, Shaw GM, Kirby RS, Hobbs CA, Sever LE, Miller LA, Meaney FJ, Levitt M (2002) Prevalence of spina bifida and anencephaly during the transition to mandatory folic acid fortification in the United States. Teratology 66(1):33–39. doi:10.1002/tera.10060 CrossRefGoogle Scholar
  30. 30.
    De Wals P, Tairou F, Van Allen MI, Uh SH, Lowry RB, Sibbald B, Evans JA, Van den Hof MC, Zimmer P, Crowley M, Fernandez B, Lee NS, Niyonsenga T (2007) Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med 357(2):135–142. doi:10.1056/NEJMoa067103 CrossRefGoogle Scholar
  31. 31.
    Mallard SR, Gray AR, Houghton LA (2012) Periconceptional bread intakes indicate New Zealand’s proposed mandatory folic acid fortification program may be outdated: results from a postpartum survey. BMC Pregnancy Childbirth 12:8. doi:10.1186/1471-2393-12-8 CrossRefGoogle Scholar
  32. 32.
    Yang QH, Carter HK, Mulinare J, Berry RJ, Friedman JM, Erickson JD (2007) Race-ethnicity differences in folic acid intake in women of childbearing age in the United States after folic acid fortification: findings from the National Health and Nutrition Examination Survey, 2001–2002. Am J Clin Nutr 85(5):1409–1416Google Scholar
  33. 33.
    Nagele P, Meissner K, Francis A, Fodinger M, Saccone NL (2011) Genetic and environmental determinants of plasma total homocysteine levels: impact of population-wide folate fortification. Pharmacogenet Genomics 21(7):426–431. doi:10.1097/FPC.0b013e32834741ff CrossRefGoogle Scholar
  34. 34.
    Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline (1998) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. The National Academies Press, Washington DCGoogle Scholar
  35. 35.
    Solis C, Veenema K, Ivanov AA, Tran S, Li R, Wang W, Moriarty DJ, Maletz CV, Caudill MA (2008) Folate intake at RDA levels is inadequate for Mexican American men with the methylenetetrahydrofolate reductase 677TT genotype. J Nutr 138(1):67–72Google Scholar
  36. 36.
    Stamm RA, Houghton LA (2013) Nutrient intake values for folate during pregnancy and lactation vary widely around the world. Nutrients 5(10):3920–3947. doi:10.3390/nu5103920 CrossRefGoogle Scholar
  37. 37.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269CrossRefGoogle Scholar
  38. 38.
    Ohrvik VE, Witthoft CM (2011) Human folate bioavailability. Nutrients 3(4):475–490. doi:10.3390/nu3040475 CrossRefGoogle Scholar
  39. 39.
    Homocysteine Lowering Trialists C (2005) Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr 82(4):806–812Google Scholar
  40. 40.
    Schorah CJ, Devitt H, Lucock M, Dowell AC (1998) The responsiveness of plasma homocysteine to small increases in dietary folic acid: a primary care study. Eur J Clin Nutr 52(6):407–411CrossRefGoogle Scholar
  41. 41.
    Venn BJ, Mann JI, Williams SM, Riddell LJ, Chisholm A, Harper MJ, Aitken W, Rossaak JI (2002) Assessment of three levels of folic acid on serum folate and plasma homocysteine: a randomised placebo-controlled double-blind dietary intervention trial. Eur J Clin Nutr 56(8):748–754. doi:10.1038/sj.ejcn.1601388 CrossRefGoogle Scholar
  42. 42.
    Hao L, Yang QH, Li Z, Bailey LB, Zhu JH, Hu DJ, Zhang BL, Erickson JD, Zhang L, Gindler J, Li S, Berry RJ (2008) Folate status and homocysteine response to folic acid doses and withdrawal among young Chinese women in a large-scale randomized double-blind trial. Am J Clin Nutr 88(2):448–457Google Scholar
  43. 43.
    Bart S Sr, Marr J, Diefenbach K, Trummer D, Sampson-Landers C (2012) Folate status and homocysteine levels during a 24-week oral administration of a folate-containing oral contraceptive: a randomized, double-blind, active-controlled, parallel-group, US-based multicenter study. Contraception 85(1):42–50. doi:10.1016/j.contraception.2011.05.013 CrossRefGoogle Scholar
  44. 44.
    Alfthan G, Laurinen MS, Valsta LM, Pastinen T, Aro A (2003) Folate intake, plasma folate and homocysteine status in a random Finnish population. Eur J Clin Nutr 57(1):81–88. doi:10.1038/sj.ejcn.1601507 CrossRefGoogle Scholar
  45. 45.
    Australian Government Department of Health Nutrient Reference Values (2006). http://www.nrv.gov.au/home
  46. 46.
    European Food Safety Authority (2009) Folic acid: an update on scientific developments. 21–22 Jan 2009, Uppsala. ISBN: 978-92-9199-178-5Google Scholar
  47. 47.
    Ioannidis JP, Ntzani EE, Trikalinos TA (2004) ‘Racial’ differences in genetic effects for complex diseases. Nat Genet 36(12):1312–1318. doi:10.1038/ng1474 CrossRefGoogle Scholar
  48. 48.
    Higgins J, Deeks JJ, Altman DG (2008) Special topics in statistics. Cochrane handbook for systematic reviews of interventions: Cochrane book series, pp 481–529Google Scholar
  49. 49.
    Furukawa TA, Barbui C, Cipriani A, Brambilla P, Watanabe N (2006) Imputing missing standard deviations in meta-analyses can provide accurate results. J Clin Epidemiol 59(1):7–10. doi:10.1016/j.jclinepi.2005.06.006 CrossRefGoogle Scholar
  50. 50.
    Wong JY, Gilson ND, van Uffelen JG, Brown WJ (2012) The effects of workplace physical activity interventions in men: a systematic review. Am J Men’s Health 6(4):303–313. doi:10.1177/1557988312436575 CrossRefGoogle Scholar
  51. 51.
    Deeks JJ, Dinnes J, D’Amico R, Sowden AJ, Sakarovitch C, Song F, Petticrew M, Altman DG (2003) Evaluating non-randomised intervention studies. Health Technol Assess 7(27):1–173CrossRefGoogle Scholar
  52. 52.
    Higgins J, Green S (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration. www.cochrane-handbook.org
  53. 53.
    Guinotte CL, Burns MG, Axume JA, Hata H, Urrutia TF, Alamilla A, McCabe D, Singgih A, Cogger EA, Caudill MA (2003) Methylenetetrahydrofolate reductase 677C–> T variant modulates folate status response to controlled folate intakes in young women. J Nutr 133(5):1272–1280Google Scholar
  54. 54.
    Zappacosta B, Mastroiacovo P, Persichilli S, Pounis G, Ruggeri S, Minucci A, Carnovale E, Andria G, Ricci R, Scala I, Genovese O, Turrini A, Mistura L, Giardina B, Iacoviello L (2013) Homocysteine lowering by folate-rich diet or pharmacological supplementations in subjects with moderate hyperhomocysteinemia. Nutrients 5(5):1531–1543. doi:10.3390/nu5051531 CrossRefGoogle Scholar
  55. 55.
    Hiraoka M, Kato K, Saito Y, Yasuda K, Kagawa Y (2004) Gene–nutrient and gene–gene interactions of controlled folate intake by Japanese women. Biochem Biophys Res Commun 316(4):1210–1216. doi:10.1016/j.bbrc.2004.02.174 CrossRefGoogle Scholar
  56. 56.
    Ashfield-Watt PA, Pullin CH, Whiting JM, Clark ZE, Moat SJ, Newcombe RG, Burr ML, Lewis MJ, Powers HJ, McDowell IF (2002) Methylenetetrahydrofolate reductase 677C–> T genotype modulates homocysteine responses to a folate-rich diet or a low-dose folic acid supplement: a randomized controlled trial. Am J Clin Nutr 76(1):180–186Google Scholar
  57. 57.
    Crider KS, Zhu JH, Hao L, Yang QH, Yang TP, Gindler J, Maneval DR, Quinlivan EP, Li Z, Bailey LB, Berry RJ (2011) MTHFR 677C–> T genotype is associated with folate and homocysteine concentrations in a large, population-based, double-blind trial of folic acid supplementation. Am J Clin Nutr 93(6):1365–1372. doi:10.3945/ajcn.110.004671 CrossRefGoogle Scholar
  58. 58.
    Qin X, Li J, Cui Y, Liu Z, Zhao Z, Ge J, Guan D, Hu J, Wang Y, Zhang F, Xu X, Wang X, Huo Y (2012) Effect of folic acid intervention on the change of serum folate level in hypertensive Chinese adults: do methylenetetrahydrofolate reductase and methionine synthase gene polymorphisms affect therapeutic responses? Pharmacogenet Genomics 22(6):421–428. doi:10.1097/FPC.0b013e32834ac5e8 CrossRefGoogle Scholar
  59. 59.
    Nelen WL, Blom HJ, Thomas CM, Steegers EA, Boers GH, Eskes TK (1998) Methylenetetrahydrofolate reductase polymorphism affects the change in homocysteine and folate concentrations resulting from low dose folic acid supplementation in women with unexplained recurrent miscarriages. J Nutr 128(8):1336–1341Google Scholar
  60. 60.
    Miyaki K, Murata M, Kikuchi H, Takei I, Nakayama T, Watanabe K, Omae K (2005) Assessment of tailor-made prevention of atherosclerosis with folic acid supplementation: randomized, double-blind, placebo-controlled trials in each MTHFR C677T genotype. J Hum Genet 50(5):241–248. doi:10.1007/s10038-005-0247-7 CrossRefGoogle Scholar
  61. 61.
    Fohr IP, Prinz-Langenohl R, Bronstrup A, Bohlmann AM, Nau H, Berthold HK, Pietrzik K (2002) 5,10-Methylenetetrahydrofolate reductase genotype determines the plasma homocysteine-lowering effect of supplementation with 5-methyltetrahydrofolate or folic acid in healthy young women. Am J Clin Nutr 75(2):275–282Google Scholar
  62. 62.
    Shelnutt KP, Kauwell GP, Chapman CM, Gregory JF 3rd, Maneval DR, Browdy AA, Theriaque DW, Bailey LB (2003) Folate status response to controlled folate intake is affected by the methylenetetrahydrofolate reductase 677C–> T polymorphism in young women. J Nutri 133(12):4107–4111Google Scholar
  63. 63.
    Nakazato M, Maeda T, Emura K, Maeda M, Tamura T (2012) Blood folate concentrations analyzed by microbiological assay and chemiluminescent immunoassay methods. J Nutr Sci Vitaminol 58(1):59–62CrossRefGoogle Scholar
  64. 64.
    Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10(1):111–113. doi:10.1038/ng0595-111 CrossRefGoogle Scholar
  65. 65.
    Takeshima N, Sozu T, Tajika A, Ogawa Y, Hayasaka Y, Furukawa TA (2014) Which is more generalizable, powerful and interpretable in meta-analyses, mean difference or standardized mean difference? BMC Med Res Methodol 14:30. doi:10.1186/1471-2288-14-30 CrossRefGoogle Scholar
  66. 66.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188CrossRefGoogle Scholar
  67. 67.
    DerSimonian R, Kacker R (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 28(2):105–114. doi:10.1016/j.cct.2006.04.004 CrossRefGoogle Scholar
  68. 68.
    Liu CS, Chiang HC, Chen HW (2004) Methylenetetrahydrofolate reductase polymorphism determines the plasma homocysteine-lowering effect of large-dose folic acid supplementation in patients with cardiovascular disease. Nutrition 20(11–12):974–978. doi:10.1016/j.nut.2004.08.004 CrossRefGoogle Scholar
  69. 69.
    Kavvoura FK, Ioannidis JP (2008) Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls. Hum Genet 123(1):1–14. doi:10.1007/s00439-007-0445-9 CrossRefGoogle Scholar
  70. 70.
    Trejaut JA, Poloni ES, Yen JC, Lai YH, Loo JH, Lee CL, He CL, Lin M (2014) Taiwan Y-chromosomal DNA variation and its relationship with Island Southeast Asia. BMC Genet 15:77. doi:10.1186/1471-2156-15-77 CrossRefGoogle Scholar
  71. 71.
    Downs SH, Black N (1998) The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 52(6):377–384CrossRefGoogle Scholar
  72. 72.
    Guize L, Thomas F, Pannier B, Bean K, Danchin N, Benetos A (2006) [Metabolic syndrome: prevalence, risk factors and mortality in a French population of 62 000 subjects]. Bull Acad Natl Med 190(3):685–697 discussion 697–700 Google Scholar
  73. 73.
    van Rosendal SP, Osborne MA, Fassett RG, Coombes JS (2010) Guidelines for glycerol use in hyperhydration and rehydration associated with exercise. Sports Med 40(2):113–139CrossRefGoogle Scholar
  74. 74.
    Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, McQuay HJ (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12CrossRefGoogle Scholar
  75. 75.
    Hao L, Ma J, Zhu J, Stampfer MJ, Tian Y, Willett WC, Li Z (2007) High prevalence of hyperhomocysteinemia in Chinese adults is associated with low folate, vitamin B-12, and vitamin B-6 status. J Nutr 137(2):407–413Google Scholar
  76. 76.
    Yang B, Fan S, Zhi X, Wang Y, Wang Y, Zheng Q, Sun G (2015) Prevalence of hyperhomocysteinemia in China: a systematic review and meta-analysis. Nutrients 7(1):74–90. doi:10.3390/nu7010074 CrossRefGoogle Scholar
  77. 77.
    Li X, Jiang J, Xu M, Xu M, Yang Y, Lu W, Yu X, Ma J, Pan J (2015) Individualized supplementation of folic acid according to polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR) reduced pregnant complications. Gynecol Obstet Invest 79(2):107–112. doi:10.1159/000367656 CrossRefGoogle Scholar
  78. 78.
    Clinical Guideline (2014) Vitamin and mineral supplementation in pregnancy. Policy developed by: SA Maternal and Neonatal Clinical Network. Govt of South Australia. Approved 19 Dec 2014. https://www.sahealth.sa.gov.au/wps/wcm/connect/f53d44004eee83bc8104a36a7ac0d6e4/Vitamin+mineral+supplementation_Clinical+Guideline_final_Dec14.pdf?MOD=AJPERES&CACHEID=f53d44004eee83bc8104a36a7ac0d6e4
  79. 79.
    Bathum L, Petersen I, Christiansen L, Konieczna A, Sorensen TI, Kyvik KO (2007) Genetic and environmental influences on plasma homocysteine: results from a Danish twin study. Clin Chem 53(5):971–979. doi:10.1373/clinchem.2006.082149 CrossRefGoogle Scholar
  80. 80.
    Farrell CJ, Kirsch SH, Herrmann M (2013) Red cell or serum folate: what to do in clinical practice? Clin Chem Lab Med CCLM/FESCC 51(3):555–569. doi:10.1515/cclm-2012-0639 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Natalie J. Colson
    • 1
    • 2
  • Helen L. Naug
    • 1
    • 2
  • Elham Nikbakht
    • 1
    • 2
  • Ping Zhang
    • 2
  • Joanna McCormack
    • 3
  1. 1.School of Medical ScienceGriffith UniversityGold CoastAustralia
  2. 2.Menzies Health Institute QueenslandGold CoastAustralia
  3. 3.School of Allied HealthGriffith UniversityGold CoastAustralia

Personalised recommendations