European Journal of Nutrition

, Volume 55, Issue 8, pp 2411–2421 | Cite as

Increased risk of iron deficiency and reduced iron absorption but no difference in zinc, vitamin A or B-vitamin status in obese women in India

  • Isabelle Herter-Aeberli
  • Prashanth Thankachan
  • Beena Bose
  • Anura V. Kurpad
Original Contribution

Abstract

Purpose

Two objectives were investigated: (1) to assess the risk of micronutrient deficiencies in relation to weight status in Indian women with a focus on iron but also including zinc, vitamin A and B vitamins and (2) to compare fractional iron absorption between obese (OB) and normal weight (NW) women.

Methods

Part 1 was a cross-sectional study including 146 healthy, middle-class women from Bangalore, India, with a BMI between 19 and 40 kg/m2. Anthropometrics and blood pressure were measured, and a fasting blood sample was obtained for the analysis of vitamin and mineral status, hepcidin, blood lipids and glucose. In part 2, 16 OB and 13 NW women consumed a standardized test meal labeled with the stable iron isotope 57Fe. Incorporation of the iron isotope into erythrocytes was measured 14 days later. In addition, iron status, hepcidin and inflammatory markers were determined.

Results

In part 1, compared to NW women, overweight/OB subjects had significantly higher C-reactive protein, serum ferritin, soluble transferrin receptor (sTfR) and hepcidin concentrations (p < 0.05). The odds ratio for having high sTfR concentrations (i.e., low iron status) with increasing BMI was 1.09 (95 % CI 1.02–1.17). None of the other micronutrients investigated showed any differences between weight status groups. In part 2, fractional iron absorption was significantly lower in the OB group compared to the NW group even after controlling for differences in iron status (10.0 ± 6.5 vs. 16.7 ± 4.6 %; p = 0.038).

Conclusions

OB women in Bangalore have an increased risk of low iron status and absorb less dietary iron; however, their risk of other micronutrient deficiencies was similar to NW women. Our results clearly demonstrate the importance of considering the double burden of malnutrition in the planning of prevention strategies especially in transition countries with emerging obesity epidemics.

Keywords

Obesity Iron deficiency Iron absorption Micronutrients Hepcidin Double burden 

References

  1. 1.
    Doak CM et al (2005) The dual burden household and the nutrition transition paradox. Int J Obesity 29(1):129–136. doi:10.1038/sj.ijo.0802824 CrossRefGoogle Scholar
  2. 2.
    Popkin BM (2004) The nutrition transition: an overview of world patterns of change. Nutr Rev 62(7 Pt 2):S140–S143CrossRefGoogle Scholar
  3. 3.
    Popkin BM, Gordon-Larsen P (2004) The nutrition transition: worldwide obesity dynamics and their determinants. Int J Obesity 28:S2–S9. doi:10.1038/sj.ijo.0802804 CrossRefGoogle Scholar
  4. 4.
    Zimmermann MB et al (2009) Iodine treatment in children with subclinical hypothyroidism due to chronic iodine deficiency decreases thyrotropin and C-peptide concentrations and improves the lipid profile. Thyroid 19(10):1099–1104. doi:10.1089/Thy.2009.0001 CrossRefGoogle Scholar
  5. 5.
    Zimmermann MB et al (2008) Adiposity in women and children from transition countries predicts decreased iron absorption, iron deficiency and a reduced response to iron fortification. Int J Obesity 32(7):1098–1104. doi:10.1038/Ijo.2008.43 CrossRefGoogle Scholar
  6. 6.
    Seltzer CC, Mayer J (1963) Serum iron and iron-binding capacity in adolescents. 2. Comparison of obese and nonobese subjects. Am J Clin Nutr 13(6):354Google Scholar
  7. 7.
    Scheer JC, Guthrie HA (1981) Hemoglobin criteria with respect to obesity. Am J Clin Nutr 34(12):2748–2751Google Scholar
  8. 8.
    Pinhas-Hamiel O et al (2003) Greater prevalence of iron deficiency in overweight and obese children and adolescents. Int J Obes 27(3):416–418CrossRefGoogle Scholar
  9. 9.
    Nead KG et al (2004) Overweight children and adolescents: a risk group for iron deficiency. Pediatrics 114(1):104–108CrossRefGoogle Scholar
  10. 10.
    Wenzel BJ, Mayer J, Stults HB (1962) Hypoferraemia in obese adolescents. Lancet 2(7251):327CrossRefGoogle Scholar
  11. 11.
    Brotanek JM et al (2007) Iron deficiency in early childhood in the United States: risk factors and racial/ethnic disparities. Pediatrics 120(3):568–575CrossRefGoogle Scholar
  12. 12.
    Micozzi MS, Albanes D, Stevens RG (1989) Relation of body size and composition to clinical biochemical and hematologic indexes in United-States men and women. Am J Clin Nutr 50(6):1276–1281Google Scholar
  13. 13.
    Lecube A et al (2006) Iron deficiency in obese postmenopausal women. Obesity (Silver Spring) 14(10):1724–1730CrossRefGoogle Scholar
  14. 14.
    Yanoff LB et al (2007) Inflammation and iron deficiency in the hypoferremia of obesity. Int J Obes (Lond) 31(9):1412–1419CrossRefGoogle Scholar
  15. 15.
    Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112(12):1785–1788CrossRefGoogle Scholar
  16. 16.
    Laftah AH et al (2004) Effect of hepcidin on intestinal iron absorption in mice. Blood 103(10):3940–3944CrossRefGoogle Scholar
  17. 17.
    Bekri S et al (2006) Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 131(3):788–796. doi:10.1053/j.gastro.2006.07.007 CrossRefGoogle Scholar
  18. 18.
    Aeberli I, Hurrell RF, Zimmermann MB (2009) Overweight children have higher circulating hepcidin concentrations and lower iron status but have dietary iron intakes and bioavailability comparable to normal weight children. Int J Obesity 33(10):1111–1117. doi:10.1038/Ijo.2009.146 CrossRefGoogle Scholar
  19. 19.
    Tussing-Humphreys LM et al (2009) Elevated systemic hepcidin and iron depletion in obese premenopausal females. Obesity (Silver Spring) 18(7):1449–1456. doi:10.1038/oby.2009.319 CrossRefGoogle Scholar
  20. 20.
    Tussing-Humphreys LM et al (2010) Decreased serum hepcidin and improved functional iron status 6 months after restrictive bariatric surgery. Obesity 18(10):2010–2016CrossRefGoogle Scholar
  21. 21.
    Lozoff B et al (2000) Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 105(4):E51CrossRefGoogle Scholar
  22. 22.
    Horton S, Ross J (2007) The economics of iron deficiency (vol 28, pg 51, 2003). Food Policy 32(1):141–143. doi:10.1016/j.foodpol.2006.08.002 CrossRefGoogle Scholar
  23. 23.
    Brownlie T et al (2002) Marginal iron deficiency without anemia impairs aerobic adaptation among previously untrained women. Am J Clin Nutr 75(4):734–742Google Scholar
  24. 24.
    Haas JD, Brownlie T (2001) Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr 131(2):676S–688SGoogle Scholar
  25. 25.
    Villaca Chaves G et al (2008) Non-alcoholic fatty liver disease and its relationship with the nutritional status of vitamin A in individuals with class III obesity. Obes Surg 18(4):378–385. doi:10.1007/s11695-007-9361-2 CrossRefGoogle Scholar
  26. 26.
    Viroonudomphol D et al (2003) The relationships between anthropometric measurements, serum vitamin A and E concentrations and lipid profiles in overweight and obese subjects. Asia Pac J Clin Nutr 12(1):73–79Google Scholar
  27. 27.
    Strauss RS (1999) Comparison of serum concentrations of alpha-tocopherol and beta-carotene in a cross-sectional sample of obese and nonobese children (NHANES III). National Health and Nutrition Examination Survey. J Pediatr 134(2):160–165CrossRefGoogle Scholar
  28. 28.
    Reddy V et al (1986) Relationship between measles, malnutrition, and blindness: a prospective study in Indian children. Am J Clin Nutr 44(6):924–930Google Scholar
  29. 29.
    Mitra AK et al (1998) Predictors of serum retinol in children with shigellosis. Am J Clin Nutr 68(5):1088–1094Google Scholar
  30. 30.
    Jeyakumar SM, Vajreswari A, Giridharan NV (2006) Chronic dietary vitamin A supplementation regulates obesity in an obese mutant WNIN/Ob rat model. Obesity (Silver Spring) 14(1):52–59. doi:10.1038/oby.2006.7 CrossRefGoogle Scholar
  31. 31.
    Garcia OP, Long KZ, Rosado JL (2009) Impact of micronutrient deficiencies on obesity. Nutr Rev 67(10):559–572. doi:10.1111/j.1753-4887.2009.00228.x CrossRefGoogle Scholar
  32. 32.
    Ribot J et al (2001) Changes of adiposity in response to vitamin A status correlate with changes of PPAR gamma 2 expression. Obes Res 9(8):500–509. doi:10.1038/oby.2001.65 CrossRefGoogle Scholar
  33. 33.
    Chen MD et al (1988) Zinc in hair and serum of obese individuals in Taiwan. Am J Clin Nutr 48(5):1307–1309Google Scholar
  34. 34.
    Gibson RS, Skeaff M, Williams S (2000) Interrelationship of indices of body composition and zinc status in 11-yr-old New Zealand children. Biol Trace Elem Res 75(1–3):65–77CrossRefGoogle Scholar
  35. 35.
    Singh RB et al (1998) Association of low plasma concentrations of antioxidant vitamins, magnesium and zinc with high body fat per cent measured by bioelectrical impedance analysis in Indian men. Magnes Res 11(1):3–10Google Scholar
  36. 36.
    Padmavathi IJN et al (2009) Prenatal and perinatal zinc restriction: effects on body composition, glucose tolerance and insulin response in rat offspring. Exp Physiol 94(6):761–769. doi:10.1113/expphysiol.2008.045856 CrossRefGoogle Scholar
  37. 37.
    Saroja Voruganti V et al (2010) Short-term weight loss in overweight/obese low-income women improves plasma zinc and metabolic syndrome risk factors. J Trace Elem Med Biol 24:271CrossRefGoogle Scholar
  38. 38.
    DiToro A et al (1997) Unchanged iron and copper and increased zinc in the blood of obese children after two hypocaloric diets. Biol Trace Elem Res 57(2):97–104CrossRefGoogle Scholar
  39. 39.
    Aasheim ET et al (2008) Vitamin status in morbidly obese patients: a cross-sectional study. Am J Clin Nutr 87(2):362–369Google Scholar
  40. 40.
    Lin YH et al (2008) Waist-to-hip ratio correlates with homocysteine levels in male patients with coronary artery disease. Clin Chem Lab Med 46(1):125–130. doi:10.1515/Cclm.2008.016 CrossRefGoogle Scholar
  41. 41.
    Hirsch S et al (2005) Serum folate and homocysteine levels in obese females with non-alcoholic fatty liver. Nutrition 21(2):137–141. doi:10.1016/j.nut.2004.03.022 CrossRefGoogle Scholar
  42. 42.
    Mahabir S et al (2008) Measures of adiposity and body fat distribution in relation to serum folate levels in postmenopausal women in a feeding study. Eur J Clin Nutr 62(5):644–650. doi:10.1038/sj.ejcn.1602771 CrossRefGoogle Scholar
  43. 43.
    Tungtrongchitr R et al (2003) Serum homocysteine, B12 and folic acid concentration in Thai overweight and obese subjects. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition 73(1): 8–14Google Scholar
  44. 44.
    Tussing-Humphreys LM et al (2009) Excess adiposity, inflammation, and iron-deficiency in female adolescents. J Am Diet Assoc 109(2):297–302. doi:10.1016/j.jada.2008.10.044 CrossRefGoogle Scholar
  45. 45.
    Amato A et al (2010) Effect of body mass index reduction on serum hepcidin levels and iron status in obese children. Int J Obes (Lond) 34(12):1772–1774. doi:10.1038/ijo.2010.204 CrossRefGoogle Scholar
  46. 46.
    Gibson RS (2005) Principles of nutritional assessment, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  47. 47.
    Bosy-Westphal A et al (2005) Need for optimal body composition data analysis using air-displacement plethysmography in children and adolescents. J Nutr 135(9):2257–2262Google Scholar
  48. 48.
    Walczyk T et al (1997) Stable isotope labels as a tool to determine the iron absorption by Peruvian school children from a breakfast meal. Fresenius J Anal Chem 359(4–5):445–449CrossRefGoogle Scholar
  49. 49.
    Kastenmayer P et al (1994) A double stable-isotope technique for measuring iron-absorption in infants. Br J Nutr 71(3):411–424CrossRefGoogle Scholar
  50. 50.
    Brown E et al (1962) Red cell, plasma, and blood volume in the healthy women measured by radiochromium cell-labeling and hematocrit. J Clin Invest 41:2182–2190. doi:10.1172/JCI104677 CrossRefGoogle Scholar
  51. 51.
    Barba C et al (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403):157–163CrossRefGoogle Scholar
  52. 52.
    Alberti KG et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645. doi:10.1161/CIRCULATIONAHA.109.192644 CrossRefGoogle Scholar
  53. 53.
    WHO and CDC (2004) Assessing the iron status of population. C.f.D.C.a.P, World Health Organization, GenevaGoogle Scholar
  54. 54.
    International Institute for Population Sciences (IIPS) and Macro International (2007) National Family Health Survey (NFHS-3), 2005-06. Mumbai, IndiaGoogle Scholar
  55. 55.
    Kroot JJC et al (2011) Hepcidin in human iron disorders: diagnostic implications. Clin Chem 57(12):1650–1669. doi:10.1373/clinchem.2009.140053 CrossRefGoogle Scholar
  56. 56.
    Ganz T (2006) Molecular pathogenesis of anemia of chronic disease. Pediatr Blood Cancer 46(5):554–557. doi:10.1002/Pbc.20656 CrossRefGoogle Scholar
  57. 57.
    Castell JV et al (1990) Acute-phase response of human hepatocytes—regulation of acute-phase protein-synthesis by interleukin-6. Hepatology 12(5):1179–1186CrossRefGoogle Scholar
  58. 58.
    Tussing-Humphreys L et al (2012) Rethinking iron regulation and assessment in iron deficiency, anemia of chronic disease, and obesity: introducing hepcidin. J Acad Nutr Diet 112(3):391–400. doi:10.1016/j.jada.2011.08.038 CrossRefGoogle Scholar
  59. 59.
    Viatte L, Vaulont S (2009) Hepcidin, the iron watcher. Biochimie 91(10):1223–1228. doi:10.1016/j.biochi.2009.06.012 CrossRefGoogle Scholar
  60. 60.
    Weisstaub G et al (2007) Plasma zinc concentration, body composition and physical activity in obese preschool children. Biol Trace Elem Res 118(2):167–174. doi:10.1007/s12011-007-0026-8 CrossRefGoogle Scholar
  61. 61.
    Mercader J et al (2006) Remodeling of white adipose tissue after retinoic acid administration in mice. Endocrinology 147(11):5325–5332. doi:10.1210/En.2006-0760 CrossRefGoogle Scholar
  62. 62.
    Jeyakumar SM, Vajreswari A, Giridharan NV (2006) Chronic dietary vitamin A supplementation regulates obesity in an obese mutant WNIN/Ob rat model. Obesity 14(1):52–59. doi:10.1038/oby.2006.7 CrossRefGoogle Scholar
  63. 63.
    Jeyakumar SM, Vajreswari A, Giridharan NV (2008) Vitamin A regulates obesity in WNIN/Ob obese rat; independent of stearoyl-CoA desaturase-1. Biochem Bioph Res Commun 370(2):243–247. doi:10.1016/j.bbrc.2008.03.073 CrossRefGoogle Scholar
  64. 64.
    Depeint F et al (2006) Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism. Chem-Biol Interact 163(1–2):94–112. doi:10.1016/j.cbi.2006.04.014 CrossRefGoogle Scholar
  65. 65.
    Depeint F et al (2006) Mitochondrial function and toxicity: Role of B vitamins on the one-carbon transfer pathways. Chem Biol Interact 163(1–2):113–132. doi:10.1016/j.cbi.2006.05.010 CrossRefGoogle Scholar
  66. 66.
    International Diabetes Federation (2005) The IDF consensus worldwide definition of the metabolic syndrome. [cited 2008 11.01.08]. http://www.idf.org/webdata/docs/Metac_syndrome_def.pdf
  67. 67.
    Datz C et al (2013) Iron homeostasis in the metabolic syndrome. Eur J Clin Invest 43(2):215–224. doi:10.1111/Eci.12032 CrossRefGoogle Scholar
  68. 68.
    Cheng HL et al (2012) The relationship between obesity and hypoferraemia in adults: a systematic review. Obes Rev 13(2):150–161. doi:10.1111/j.1467-789X.2011.00938.x CrossRefGoogle Scholar
  69. 69.
    Tidehag P et al (1996) A comparison of iron absorption from single meals and daily diets using radioFe (Fe-55, Fe-59). Br J Nutr 75(2):281–289. doi:10.1079/Bjn19960130 CrossRefGoogle Scholar
  70. 70.
    Cook JD, Dassenko SA, Lynch SR (1991) Assessment of the role of nonheme-iron availability in iron balance. Am J Clin Nutr 54(4):717–722Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Isabelle Herter-Aeberli
    • 1
    • 2
  • Prashanth Thankachan
    • 2
  • Beena Bose
    • 2
  • Anura V. Kurpad
    • 2
  1. 1.Laboratory of Human Nutrition, Institute of Food, Nutrition and HealthETH ZurichZurichSwitzerland
  2. 2.St. John’s Research InstituteSt. John’s National Academy of Health SciencesBangaloreIndia

Personalised recommendations