European Journal of Nutrition

, Volume 55, Issue 4, pp 1661–1670 | Cite as

Effects of wheat bran extract rich in arabinoxylan oligosaccharides and resistant starch on overnight glucose tolerance and markers of gut fermentation in healthy young adults

  • Elin V. Johansson Boll
  • Linda M. N. K. Ekström
  • Christophe M. Courtin
  • Jan A. Delcour
  • Anne C. Nilsson
  • Inger M. E. Björck
  • Elin M. ÖstmanEmail author
Original Contribution



Specific combinations of dietary fiber (DF) have been observed to result in improved glucose tolerance at a subsequent standardized breakfast. Arabinoxylan oligosaccharides (AXOS) are considered as DF with prebiotic potential, but so far no studies have investigated their metabolic effects in humans. This randomized cross-over study evaluated the overnight impact of breads containing AXOS-rich wheat bran extract and resistant starch (RS, Hi-Maize), separately or combined, on glucose tolerance, related metabolic parameters and markers of gut fermentation in healthy subjects.


Evening reference and test products were: (1) reference white wheat flour bread (WWB), WWB supplemented with (2) AXOS and RS (WWB + AXOS + RS), (3) an increased content of either AXOS (WWB + hiAXOS) or (4) RS (WWB + hiRS). At the subsequent standardized breakfast, blood was sampled for 3 h to monitor glucose, insulin, nonesterified fatty acids, glucagon-like peptide (GLP)-1 and GLP-2. Breath hydrogen (H2) and short chain fatty acids (SCFA) were measured as markers of gut fermentation, and subjective appetite was rated using visual analog scales.


Dose-dependent decreases in glucose responses were observed with increased AXOS over the duration of 3 h. Insulin sensitivity index was improved in the morning after the WWB + hiAXOS evening meal. An increase in breath H2 concentration and circulating SCFA was observed in the morning after both evening meals containing AXOS.


The present study indicates that AXOS have the potential of improving glucose tolerance in an overnight perspective and suggested mechanisms are improved insulin sensitivity and increased gut fermentation.


Arabinoxylan oligosaccharides Resistant starch Glucose tolerance Gut fermentation Healthy subjects Overnight 



This publication was financially supported by the European Commission in the Communities 6th Framework Programme, Project HEALTHGRAIN (FOOD-CT-2005-514008). It reflects the author’s views, and the Community is not liable for any use that may be made of the information contained in this publication. This publication was also financially supported by the Lund University Antidiabetic Food Centre, a VINNOVA VINN Excellence Centre.

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

394_2015_985_MOESM1_ESM.pdf (8 kb)
Supplementary material 1 (PDF 7 kb)


  1. 1.
    Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14. doi: 10.1016/j.diabres.2009.10.007 CrossRefGoogle Scholar
  2. 2.
    Alberti KG, Zimmet P, Shaw J (2006) Metabolic syndrome—a new world-wide definition: a consensus statement from the international diabetes federation. Diabet Med 23(5):469–480. doi: 10.1111/j.1464-5491.2006.01858.x CrossRefGoogle Scholar
  3. 3.
    Blaak EE, Antoine JM, Benton D, Bjorck I, Bozzetto L, Brouns F, Diamant M, Dye L, Hulshof T, Holst JJ, Lamport DJ, Laville M, Lawton CL, Meheust A, Nilsson A, Normand S, Rivellese AA, Theis S, Torekov SS, Vinoy S (2012) Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 13(10):923–984. doi: 10.1111/j.1467-789X.2012.01011.x CrossRefGoogle Scholar
  4. 4.
    Bjorck I, Granfeldt Y, Liljeberg H, Tovar J, Asp NG (1994) Food properties affecting the digestion and absorption of carbohydrates. Am J Clin Nutr 59(3):S699–S705Google Scholar
  5. 5.
    Slavin J (2004) Whole grains and human health. Nutr Res Rev 17(1):99–110. doi: 10.1079/NRR200374 CrossRefGoogle Scholar
  6. 6.
    Thorburn A, Muir J, Proietto J (1993) Carbohydrate fermentation decreases hepatic glucose output in healthy subjects. Metabolism 42(6):780–785CrossRefGoogle Scholar
  7. 7.
    Brighenti F, Benini L, Del Rio D, Casiraghi C, Pellegrini N, Scazzina F, Jenkins DJ, Vantini I (2006) Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. Am J Clin Nutr 83(4):817–822Google Scholar
  8. 8.
    Nilsson AC, Östman EM, Holst JJ, Björck IME (2008) Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast. J Nutr 138(4):732–739Google Scholar
  9. 9.
    Grootaert C, Delcour JA, Courtin CM, Broekaert WF, Verstraete W, Van de Wiele T (2007) Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends Food Sci Technol 18(2):64–71CrossRefGoogle Scholar
  10. 10.
    Damen B, Cloetens L, Broekaert WF, Francois I, Lescroart O, Trogh I, Arnaut F, Welling GW, Wijffels J, Delcour JA, Verbeke K, Courtin CM (2012) Consumption of breads containing in situ-produced arabinoxylan oligosaccharides alters gastrointestinal effects in healthy volunteers. J Nutr 142(3):470–477. doi: 10.3945/jn.111.146464 CrossRefGoogle Scholar
  11. 11.
    Cloetens L, Broekaert WF, Delaedt Y, Ollevier F, Courtin CM, Delcour JA, Rutgeerts P, Verbeke K (2010) Tolerance of arabinoxylan-oligosaccharides and their prebiotic activity in healthy subjects: a randomised, placebo-controlled cross-over study. Br J Nutr 103(5):703–713. doi: 10.1017/S0007114509992248 CrossRefGoogle Scholar
  12. 12.
    Maki KC, Gibson GR, Dickmann RS, Kendall CW, Chen CY, Costabile A, Comelli EM, McKay DL, Almeida NG, Jenkins D, Zello GA, Blumberg JB (2012) Digestive and physiologic effects of a wheat bran extract, arabino-xylan-oligosaccharide, in breakfast cereal. Nutrition 28(11–12):1115–1121. doi: 10.1016/j.nut.2012.02.010 CrossRefGoogle Scholar
  13. 13.
    Francois IE, Lescroart O, Veraverbeke WS, Marzorati M, Possemiers S, Hamer H, Windey K, Welling GW, Delcour JA, Courtin CM, Verbeke K, Broekaert WF (2014) Effects of wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal parameters in healthy preadolescent children. J Pediatr Gastroenterol Nutr 58(5):647–653. doi: 10.1097/MPG.0000000000000285 CrossRefGoogle Scholar
  14. 14.
    Neyrinck AM, Van Hee VF, Piront N, De Backer F, Toussaint O, Cani PD, Delzenne NM (2012) Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr Diabetes 2:e28. doi: 10.1038/nutd.2011.24 CrossRefGoogle Scholar
  15. 15.
    Blundell J, De Graaf C, Hulshof T, Jebb S, Livingstone B, Lluch A, Mela D, Salah S, Schuring E, Van Der Knaap H, Westerterp M (2010) Appetite control: methodological aspects of the evaluation of foods. Obes Rev 11(3):251–270CrossRefGoogle Scholar
  16. 16.
    Johansson E, Nilsson A, Östman E, Björck I (2013) Effects of indigestible carbohydrates in barley on glucose metabolism, appetite and voluntary food intake over 16 h in healthy adults. Nutr J 12(1):46CrossRefGoogle Scholar
  17. 17.
    Holm J, Björck IME, Drews A, Asp N-G (1986) A rapid method for the analysis of starch. Starch/Stärke 38:224–226CrossRefGoogle Scholar
  18. 18.
    Bjorck IME, Siljestrom MA (1992) Invivo and invitro digestibility of starch in autoclaved pea and potato products. J Sci Food Agric 58(4):541–553. doi: 10.1002/jsfa.2740580414 CrossRefGoogle Scholar
  19. 19.
    Akerberg AK, Liljeberg HG, Granfeldt YE, Drews AW, Bj-orck IM (1998) An in vitro method, based on chewing, to predict resistant starch content in foods allows parallel determination of potentially available starch and dietary fiber. J Nutr 128(3):651–660Google Scholar
  20. 20.
    Femia AP, Salvadori M, Broekaert WF, Francois IE, Delcour JA, Courtin CM, Caderni G (2010) Arabinoxylan-oligosaccharides (AXOS) reduce preneoplastic lesions in the colon of rats treated with 1,2-dimethylhydrazine (DMH). Eur J Nutr 49(2):127–132. doi: 10.1007/s00394-009-0050-x CrossRefGoogle Scholar
  21. 21.
    Francois IE, Lescroart O, Veraverbeke WS, Kubaszky R, Hargitai J, Esdaile DJ, Beres E, Soni MG, Cockburn A, Broekaert WF (2010) Safety assessment of a wheat bran extract containing arabinoxylan-oligosaccharides: mutagenicity, clastogenicity, and 90-day rat-feeding studies. Int J Toxicol 29(5):479–495. doi: 10.1177/1091581810374219 CrossRefGoogle Scholar
  22. 22.
    Rosén LA, Silva LO, Andersson UK, Holm C, Ostman EM, Björck IM (2009) Endosperm and whole grain rye breads are characterized by low post-prandial insulin response and a beneficial blood glucose profile. Nutr J 8:42. doi: 10.1186/1475-2891-8-42 CrossRefGoogle Scholar
  23. 23.
    Brighenti F (1998) Summary of the conclusion of the working group on Profibre interlaboratory study on determination of short chain fatty acids in blood. In: Gullion F, Amadò R, Amaral-Collaco MT et al (eds) Functional properties of non-digestible carbohydrates. European Commission, DG XII, Science, Research and Development, Brussels, pp 150–153Google Scholar
  24. 24.
    Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27(6):1487–1495. doi: 10.2337/diacare.27.6.1487 CrossRefGoogle Scholar
  25. 25.
    Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22(9):1462–1470. doi: 10.2337/diacare.22.9.1462 CrossRefGoogle Scholar
  26. 26.
    Priebe MG, Wang H, Weening D, Schepers M, Preston T, Vonk RJ (2010) Factors related to colonic fermentation of nondigestible carbohydrates of a previous evening meal increase tissue glucose uptake and moderate glucose-associated inflammation. Am J Clin Nutr 91(1):90–97CrossRefGoogle Scholar
  27. 27.
    Robertson MD, Currie JM, Morgan LM, Jewell DP, Frayn KN (2003) Prior short-term consumption of resistant starch enhances postprandial insulin sensitivity in healthy subjects. Diabetologia 46(5):659–665Google Scholar
  28. 28.
    Zeyda M, Stulnig TM (2009) Obesity, inflammation, and insulin resistance: a mini-review. Gerontology 55(4):379–386. doi: 10.1159/000212758 CrossRefGoogle Scholar
  29. 29.
    Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, Wolever TMS (2005) Glycaemic index methodology. Nutr Res Rev 18(1):145–171. doi: 10.1079/nrr2005100 CrossRefGoogle Scholar
  30. 30.
    Francois IE, Lescroart O, Veraverbeke WS, Marzorati M, Possemiers S, Evenepoel P, Hamer H, Houben E, Windey K, Welling GW, Delcour JA, Courtin CM, Verbeke K, Broekaert WF (2012) Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. Br J Nutr 108(12):2229–2242. doi: 10.1017/S0007114512000372 CrossRefGoogle Scholar
  31. 31.
    Nilsson AC, Ostman EM, Knudsen KEB, Holst JJ, Bjorck IME (2010) A cereal-based evening meal rich in indigestible carbohydrates increases plasma butyrate the next morning. J Nutr 140(11):1932–1936. doi: 10.3945/jn.110.123604 CrossRefGoogle Scholar
  32. 32.
    Heimann E, Nyman M, Degerman E (2014) Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes. Adipocyte. doi: 10.4161/21623945.2014.960694 Google Scholar
  33. 33.
    Walton GE, Lu C, Trogh I, Arnaut F, Gibson GR (2012) A randomised, double-blind, placebo controlled cross-over study to determine the gastrointestinal effects of consumption of arabinoxylan-oligosaccharides enriched bread in healthy volunteers. Nutr J 11:36. doi: 10.1186/1475-2891-11-36 CrossRefGoogle Scholar
  34. 34.
    Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, De Backer F, Neyrinck AM, Delzenne NM (2009) Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 90(5):1236–1243. doi: 10.3945/ajcn.2009.28095 CrossRefGoogle Scholar
  35. 35.
    Nilsson AC, Östman EM, Granfeldt Y, Björck IME (2008) Effect of cereal test breakfasts differing in glycemic index and content of indigestible carbohydrates on daylong glucose tolerance in healthy subjects. Am J Clin Nutr 87(3):645–654Google Scholar
  36. 36.
    Robertson MD (2012) Dietary-resistant starch and glucose metabolism. Curr Opin Clin Nutr Metab Care 15(4):362–367. doi: 10.1097/MCO.0b013e3283536931 CrossRefGoogle Scholar
  37. 37.
    Bodinham CL, Frost GS, Robertson MD (2010) Acute ingestion of resistant starch reduces food intake in healthy adults. Br J Nutr 103(6):917–922. doi: 10.1017/S0007114509992534 CrossRefGoogle Scholar
  38. 38.
    Robertson MD, Bickerton AS, Dennis AL, Vidal H, Frayn KN (2005) Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr 82(3):559–567Google Scholar
  39. 39.
    Maki KC, Pelkman CL, Finocchiaro ET, Kelley KM, Lawless AL, Schild AL, Rains TM (2012) Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J Nutr 142(4):717–723. doi: 10.3945/jn.111.152975 CrossRefGoogle Scholar
  40. 40.
    Cloetens L, De Preter V, Swennen K, Broekaert WF, Courtin CM, Delcour JA, Rutgeerts P, Verbeke K (2008) Dose–response effect of arabinoxylooligosaccharides on gastrointestinal motility and on colonic bacterial metabolism in healthy volunteers. J Am Coll Nutr 27(4):512–518CrossRefGoogle Scholar
  41. 41.
    Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA, Verstraete W, Van de Wiele T (2009) Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 69(2):231–242. doi: 10.1111/j.1574-6941.2009.00712.x CrossRefGoogle Scholar
  42. 42.
    Sanchez JI, Marzorati M, Grootaert C, Baran M, Van Craeyveld V, Courtin CM, Broekaert WF, Delcour JA, Verstraete W, Van de Wiele T (2009) Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the simulator of human intestinal microbial ecosystem. Microb Biotechnol 2(1):101–113. doi: 10.1111/j.1751-7915.2008.00064.x CrossRefGoogle Scholar
  43. 43.
    Trogh I, Courtin CM, Andersson AAM, Aman P, Sorensen JF, Delcour JA (2004) The combined use of hull-less barley flour and xylanase as a strategy for wheat/hull-less barley flour breads with increased arabinoxylan and (1→3,1→4)-beta-D-glucan levels. J Cereal Sci 40(3):257–267. doi: 10.1016/j.jcs.2004.08.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Food for Health Science CentreLund UniversityLundSweden
  2. 2.Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFORCE), Department of Microbial and Molecular Systems (M2S)KU LeuvenLeuvenBelgium

Personalised recommendations