European Journal of Nutrition

, Volume 55, Issue 4, pp 1653–1660 | Cite as

Pomegranate inhibits neuroinflammation and amyloidogenesis in IL-1β-stimulated SK-N-SH cells

  • Ravikanth Velagapudi
  • Gina Baco
  • Sunjeet Khela
  • Uchechukwu Okorji
  • Olumayokun OlajideEmail author
Original Contribution



Pomegranate fruit, Punica granatum L. (Punicaceae), and its constituents have been shown to inhibit inflammation. In this study, we aimed to assess the effects of freeze-dried pomegranate (PWE) on PGE2 production in IL-1β-stimulated SK-N-SH cells.


An enzyme immunoassay (EIA) was used to measure prostaglandin E2 (PGE2) production from supernatants of IL-1β-stimulated SK-N-SH cells. Expression of COX-2, phospho-IκB, and phospho-IKK proteins was evaluated, while NF-κB reporter gene assay was carried out in TNFα-stimulated HEK293 cells to determine the effect of PWE on NF-κB transactivation. Levels of BACE-1 and Aβ in SK-N-SH cells stimulated with IL-1β were measured with an in cell ELISA.


PWE (25–200 μg/ml) dose dependently reduced COX-2-dependent PGE2 production in SK-N-SH cells stimulated with IL-1β. Phosphorylation of IκB and IKK was significantly (p < 0.001) inhibited by PWE (50–200 μg/ml). Our studies also show that PWE (50–200 μg/ml) significantly (p < 0.01) inhibited NF-κB transactivation in TNFα-stimulated HEK293 cells. Furthermore, PWE inhibited BACE-1 and Aβ expression in SK-N-SH cells treated with IL-1β.


Taken together, our study demonstrates that pomegranate inhibits inflammation, as well as amyloidogenesis in IL-1β-stimulated SK-N-SH cells. We propose that pomegranate is a potential nutritional strategy in slowing the progression of neurodegenerative disorders such as Alzheimer’s disease.


Pomegranate Neuroinflammation Amyloidogenesis Neurons Interleukin-1β 



This study was carried out in part with funding by the Alexander von Humboldt Foundation to Dr. Olumayokun Olajide. We wish to thank Mr. Oluwatodimu Sam-Dahunsi for assisting with freeze-drying of pomegranate juice.

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403CrossRefGoogle Scholar
  2. 2.
    Castellani RK, Rolston RK, Smith MA (2010) Alzheimer disease. Dis Mon 56:484–546CrossRefGoogle Scholar
  3. 3.
    Selkoe DJ (2001) Alzheimer’s disease. Genes, proteins, and therapy. Physiol Rev 81:741–766Google Scholar
  4. 4.
    Messmer K, Reynolds GP (2005) An in vitro model of inflammatory neurodegeneration and its neuroprotection. Neurosci Lett 388:39–44CrossRefGoogle Scholar
  5. 5.
    Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M, Tone Y, Tong Y, Song W (2012) Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 15:77–90CrossRefGoogle Scholar
  6. 6.
    HoshinoT NT, Homan T, Tanaka K, Sugimoto Y, Araki W, Narita M, Narumiya S, Suzuki T, Mizushima T (2007) Involvement of prostaglandin E2 in production of amyloid-peptides both in vitro and in vivo. J Biol Chem 282:32676–32688CrossRefGoogle Scholar
  7. 7.
    Yasojima K, Schwab C, McGeer EG, McGeer PL (1999) Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res 830:226–236CrossRefGoogle Scholar
  8. 8.
    Montine TJ, Sidell KR, Crews BC, Markesbery WR, Marnett LJ, Roberts LJ 2nd, Morrow JD (1999) Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology 53:1495–1498CrossRefGoogle Scholar
  9. 9.
    Paris D, Patel N, Quadros A, Linan M, Bakshi P, Ait-Ghezala G, Mullan M (2007) Inhibition of Abeta production by NF-kappaB inhibitors. Neurosci Lett 415:11–16CrossRefGoogle Scholar
  10. 10.
    Bales KR, Du Y, Dodel RC, Yan GM, Hamilton-Byrd E, Paul SM (1998) The NF–kappaB/Rel family of proteins mediates Abeta-induced neurotoxicity and glial activation. Brain Res Mol Brain Res 57:63–72CrossRefGoogle Scholar
  11. 11.
    Marwarha G, Raza S, Meiers C, Ghribi O (2014) Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway. Biochim Biophys Acta 1842:1587–1595CrossRefGoogle Scholar
  12. 12.
    Bourne KZ, Ferrari DC, Lange-Dohna C, Rossner S, Wood TG, Perez-Polo JR (2007) Differential regulation of BACE1 promoter activity by NFB in neurons and glia upon exposure to Ab peptides. J Neurosci Res 85:1194–1204CrossRefGoogle Scholar
  13. 13.
    Buggia-Prevot V, Sevalle J, Rossner S, Checler F (2008) NFkappaB-dependent control of BACE1 promoter transactivation by Abeta42. J Biol Chem 283:10037–10047CrossRefGoogle Scholar
  14. 14.
    Guglielmotto M, Aragno M, Tamagno E, Vercellinatto I, Visentin S, Medana C, Catalano MG, Smith MA, Perry G, Danni O, Boccuzzi G, Tabaton M (2012) AGEs/RAGE complex upregulates BACE1 via NF-κB pathway activation. Neurobiol Aging 33:196-e13–196-e27CrossRefGoogle Scholar
  15. 15.
    Camandola S, Poli G, Mattson MP (2000) The lipid peroxidation product 4-hydroxy-2,3-nonenal inhibits constitutive and inducible activity of nuclear factor kappa B in neurons. Brain Res Mol Brain Res 85:53–60CrossRefGoogle Scholar
  16. 16.
    Lee SI, Kim BS, Kim KS, Lee S, Shin KS, Lim JS (2008) Immunosuppressive activity of punicalagin via inhibition of NFAT activation. Biochem Biophys Res Commun 371:799–803CrossRefGoogle Scholar
  17. 17.
    Romier B, Van De Walle J, During A, Larondelle Y, Schneider YJ (2008) Modulation of signalling nuclear factor-kappaB activation pathway by polyphenols in human intestinal Caco-2 cells. Br J Nutr 100:542–551CrossRefGoogle Scholar
  18. 18.
    Oucharif A, Khalki H, Chaib S, Mountassir M, Aboufatima R, Farouk L, Benharraf A, Chait A (2012) Comparative study of the anti-inflammatory and antinociceptive effects of two varieties of Punica granatum. Pharm Biol 50:429–438CrossRefGoogle Scholar
  19. 19.
    Lee CJ, Chen LG, Liang WL, Wang CC (2010) Anti-inflammatory effects of Punica granatum Linne in vitro and in vivo. Food Chem 118:315–322CrossRefGoogle Scholar
  20. 20.
    Olajide OA, Kumar A, Velagapudi R, Okorji U, Fiebich BL (2014) Punicalagin inhibits neuroinflammation in LPS-activated rat primary microglia. Mol Nutr Food Res 58:1843–1851CrossRefGoogle Scholar
  21. 21.
    Seeram NP, Lee R, Hardy ML, Heber D (2005) Large scale purification of ellagitannins from pomegranate husk, a by-product of the commercial juice industry. Sep Purif Technol 41:49–55CrossRefGoogle Scholar
  22. 22.
    Olajide OA, Velagapudi R, Okorji U, Sarker S, Fiebich BL (2014) Picralima nitida seeds suppress PGE2 production by interfering with multiple signalling pathways in IL-1β-stimulated SK-N-SH neuronal cells. J Ethnopharmacol 152:377–383CrossRefGoogle Scholar
  23. 23.
    Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69CrossRefGoogle Scholar
  24. 24.
    Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO (2012) Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflamm 9:199CrossRefGoogle Scholar
  25. 25.
    Pasinetti GM, Aisen PS (1998) Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience 87:319–324CrossRefGoogle Scholar
  26. 26.
    Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 20:5709–5714Google Scholar
  27. 27.
    Romier-Crouzet B, Van De Walle J, During A, Joly A, Rousseau C, Henry O, Larondelle Y, Schneider YJ (2009) Inhibition of inflammatory mediators by polyphenolic plant extracts in human intestinal Caco-2 cells. Food Chem Toxicol 47:1221–1230CrossRefGoogle Scholar
  28. 28.
    Ahmed S, Wang N, Hafeez BB, Cheruvu VK, Haqqi TM (2005) Punica granatum L. extract inhibits IL–1beta-induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF-kappa B in human chondrocytes in vitro. J Nutr 135:2096–2102Google Scholar
  29. 29.
    Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402:537–540CrossRefGoogle Scholar
  30. 30.
    Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, Fan W, Kha H, Zhang J, Gong Y, Martin L, Louis JC, Yan Q, Richards WG, Citron M, Vassar R (2001) Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci 4:231–232CrossRefGoogle Scholar
  31. 31.
    Lei F, Xing DM, Xiang L, Zhao YN, Wang W, Zhang LJ, Du LJ (2003) Pharmacokinetic study of ellagic acid in rat after oral administration of pomegranate leaf extract. J Chromatogr B Analyt Technol Biomed Life Sci 796:189–194CrossRefGoogle Scholar
  32. 32.
    Shukla M, Gupta K, Rasheed Z, Khan KA, Haqqi TM (2008) Bioavailable constituents/metabolites of pomegranate (Punica granatum L) preferentially inhibit COX2 activity ex vivo and IL–1beta-induced PGE2 production in human chondrocytes in vitro. J Inflamm (Lond) 5:9CrossRefGoogle Scholar
  33. 33.
    Seeram NP, Lee R, Heber D (2004) Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juice. Clin Chim Acta 348:63–68CrossRefGoogle Scholar
  34. 34.
    Bialonska D, Kasimsetty SG, Khan SI, Ferreira D (2009) Urolithins, intestinal microbial metabolites of Pomegranate ellagitannins, exhibit potent antioxidant activity in a cell-based assay. J Agric Food Chem 57:10181–10186CrossRefGoogle Scholar
  35. 35.
    Farbood Y, Sarkaki A, Dianat M, Khodadadi A, Haddad MK, Mashhadizadeh S (2015) Ellagic acid prevents cognitive and hippocampal long-term potentiation deficits and brain inflammation in rat with traumatic brain injury. Life Sci 124:120–127CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ravikanth Velagapudi
    • 1
  • Gina Baco
    • 1
  • Sunjeet Khela
    • 1
  • Uchechukwu Okorji
    • 1
  • Olumayokun Olajide
    • 1
    Email author
  1. 1.Department of Pharmacy, School of Applied SciencesUniversity of HuddersfieldQueensgate, HuddersfieldUK

Personalised recommendations