Advertisement

European Journal of Nutrition

, Volume 55, Issue 3, pp 1275–1282 | Cite as

Examination of iodine status in the German population: an example for methodological pitfalls of the current approach of iodine status assessment

  • S. A. Johner
  • M. Thamm
  • R. Schmitz
  • T. RemerEmail author
Original Contribution

Abstract

Purpose

Preliminary iodine concentration (UIC) measurements in spot urines of the representative German adult study DEGS indicated a severe worsening of iodine status compared to previous results in German children (KiGGS study). Therefore, we aimed to evaluate adult iodine status in detail and to investigate the impact of hydration status on UIC.

Methods

UIC and creatinine concentrations were measured in 6978 spot urines from the German nationwide DEGS study (2008–2011). Twenty-four-hour iodine excretions (24-h UIE) were estimated by relating iodine/creatinine ratios to age- and sex-specific 24-h creatinine reference values. Urine osmolality was measured in two subsamples of spot urines (n = 100 each) to determine the impact of hydration status on UIC.

Results

In DEGS, median UIC was 69 µg/L in men and 54 µg/L in women, lying clearly below the WHO cutoff for iodine sufficiency (100 µg/L). Estimated median 24-h UIE was 113 µg/day, accompanied by 32 % of DEGS adults, lying below the estimated average requirement (EAR) for iodine. Comparative analysis with the KiGGS data (>14,000 spot urines of children; median UIC 117 µg/L) revealed a comparable percentage <EAR (33 %). In two DEGS subsamples with significantly different UIC but similar median 24-h UIE, osmolality was twofold higher in the high- versus the low-UIC group.

Conclusion

Over 30 % of participants in the two German surveys had an estimated iodine intake less than the respective age-group-specific EAR. Our data strongly suggest that even in large surveys, hydration status can considerably interfere with the epidemiological iodine assessment parameter UIC. The present data can serve as an example how to evaluate population-based spot urine data on a 24-h basis, independent of hydration status.

Keywords

Iodine DEGS study Creatinine Spot urine 24-h Iodine excretion 

Notes

Acknowledgments

This work was financially supported by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE), Grant Number 2813HS013. DEGS1 is primarily funded by the German Ministry of Health (BMG).

Conflict of interest

None.

References

  1. 1.
    Hetzel BS (1994) Iodine deficiency and fetal brain damage. N Engl J Med 331(26):1770–1771CrossRefGoogle Scholar
  2. 2.
    World Health Organisation (1990) Overcoming iodine deficiency disorders. In: Proceedings of the fifty-third World Health Assembly, Geneva, 7–17 MayGoogle Scholar
  3. 3.
    Pearce EN, Andersson M, Zimmermann MB (2013) Global iodine nutrition: where do we stand in 2013? Thyroid 23(5):523–528CrossRefGoogle Scholar
  4. 4.
    Li M, Eastman CJ, Waite KV, Ma G, Zacharin MR, Topliss DJ, Harding PE, Walsh JP, Ward LC, Mortimer RH, Mackenzie EJ, Byth K, Doyle Z (2006) Are Australian children iodine deficient? Results of the Australian National Iodine Nutrition Study. Med J Aust 184(4):165–169Google Scholar
  5. 5.
    Skeaff SA, Thomson CD, Wilson N, Parnell WR (2012) A comprehensive assessment of urinary iodine concentration and thyroid hormones in New Zealand schoolchildren: a cross-sectional study. Nutr J 11:31CrossRefGoogle Scholar
  6. 6.
    Vanderpump MarkPJ, Lazarus JH, Smyth PP, Laurberg P, Holder RL, Boelaert K, Franklyn JA (2011) Iodine status of UK schoolgirls: a cross-sectional survey. Lancet 377(9782):2007–2012CrossRefGoogle Scholar
  7. 7.
    World Health Organisation (2007) Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers, 3rd edn. World Health Organization, GenevaGoogle Scholar
  8. 8.
    Remer T, Fonteyn N, Alexy U, Berkemeyer S (2006) Longitudinal examination of 24-h urinary iodine excretion in schoolchildren as a sensitive, hydration status-independent research tool for studying iodine status. Am J Clin Nutr 83(3):639–646Google Scholar
  9. 9.
    Zimmermann MB (2009) Iodine deficiency. Endocr Rev 30(4):376–408CrossRefGoogle Scholar
  10. 10.
    Thamm M, Ellert U, Thierfelder W, Liesenkötter K, Völzke H (2007) Jodversorgung in Deutschland. Ergebnisse des Jodmonitorings im Kinder- und Jugendgesundheitssurvey (KiGGS). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 50(5–6):744–749CrossRefGoogle Scholar
  11. 11.
    Kurth B (2009) DEGS—Studie zur Gesundheit Erwachsener in Deutschland: Projektbeschreibung. Robert-Koch-Inst, BerlinGoogle Scholar
  12. 12.
    Gößwald A, Lange M, Kamtsiuris P, Kurth B (2012) DEGS: Studie zur Gesundheit Erwachsener in Deutschland. Bundesweite Quer- und Längsschnittstudie im Rahmen des Gesundheitsmonitorings des Robert Koch-Instituts. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 55(6–7):775–780CrossRefGoogle Scholar
  13. 13.
    Scheidt-Nave C, Kamtsiuris P, Gößwald A, Hölling H, Lange M, Busch MA, Dahm S, Dölle R, Ellert U, Fuchs J, Hapke U, Heidemann C, Knopf H, Laussmann D, Mensink GertBM, Neuhauser H, Richter A, Sass A, Rosario AS, Stolzenberg H, Thamm M, Kurth B (2012) German health interview and examination survey for adults (DEGS)—design, objectives and implementation of the first data collection wave. BMC Public Health 12:730CrossRefGoogle Scholar
  14. 14.
    Kamtsiuris P, Lange M, Hoffmann R, Schaffrath Rosario A, Dahm S, Kuhnert R, Kurth BM (2013) Die erste Welle der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1): Stichprobendesign, Response, Gewichtung und Repräsentativität. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 56(5–6):620–630CrossRefGoogle Scholar
  15. 15.
    Remer T, Montenegro-Bethancourt G, Shi L (2014) Long-term urine biobanking: storage stability of clinical chemical parameters under moderate freezing conditions without use of preservatives. Clin Biochem 47(18):307–311CrossRefGoogle Scholar
  16. 16.
    Vejbjerg P, Knudsen N, Perrild H, Laurberg P, Andersen S, Rasmussen LB, Ovesen L, Jørgensen T (2009) Estimation of iodine intake from various urinary iodine measurements in population studies. Thyroid 19(11):1281–1286CrossRefGoogle Scholar
  17. 17.
    Remer T, Neubert A, Maser-Gluth C (2002) Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am J Clin Nutr 75(3):561–569Google Scholar
  18. 18.
    Manz F, Johner SA, Wentz A, Boeing H, Remer T (2012) Water balance throughout the adult life span in a German population. Br J Nutr 107(11):1673–1681CrossRefGoogle Scholar
  19. 19.
    Schneider R (1992) Die VERA-Stichprobe im Vergleich mit Volkszählung, Mikrozensus und anderen nationalen Untersuchungen. Wiss. Fachverl. Fleck, NiederkleenGoogle Scholar
  20. 20.
    Johner SA, Boeing H, Thamm M, Remer T (2015) Urinary 24-hour creatinine excretion in adults and its use as a simple tool for the estimation of daily urinary analyte excretion from analyte/creatinine ratios in populations. Eur J Clin Nutr (in revision)Google Scholar
  21. 21.
    Food and Nutrition Board, Institute of Medicine (2000) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington, DCGoogle Scholar
  22. 22.
    Murphy SP, Barr SI (2011) Practice paper of the American Dietetic Association: using the dietary reference intakes. J Am Diet Assoc 111(5):762–770CrossRefGoogle Scholar
  23. 23.
    Institute of Medicine (2000) DRI dietary reference intakes: applications in dietary assessment. National Academies Press, Washington, DCGoogle Scholar
  24. 24.
    Johner SA, Günther ALB, Remer T (2011) Current trends of 24-h urinary iodine excretion in German schoolchildren and the importance of iodised salt in processed foods. Br J Nutr 106(11):1749–1756CrossRefGoogle Scholar
  25. 25.
    Johner SA, von Nida K, Jahreis G, Remer T (2012) Aktuelle Untersuchungen zeitlicher Trends und saisonaler Effekte des Jodgehaltes in Kuhmilch-Untersuchungen aus Nordrhein Westfalen. BMTW 125(1–2):76–82Google Scholar
  26. 26.
    Kesteloot H, Joossens JV (1996) On the determinants of the creatinine clearance: a population study. J Hum Hypertens 10(4):245–249Google Scholar
  27. 27.
    Montenegro-Bethancourt G, Johner SA, Stehle P, Neubert A, Remer T (2015) Iodine status assessment in children: spot urine iodine concentration reasonably reflects true 24-hour iodine excretion only when scaled to creatinine. Thyroid. doi: 10.1089/thy.2015.0006
  28. 28.
    Köhler M, Fechner A, Leiterer M, Spörl K, Remer T, Schäfer U, Jahreis G (2012) Iodine content in milk from German cows and in human milk: new monitoring study. Trace Elem Electrolytes 29(04):119–126CrossRefGoogle Scholar
  29. 29.
    WHO/FAO (2004) Vitamin and mineral requirements in human nutrition, 2nd edn. World Health Organization, GenevaGoogle Scholar
  30. 30.
    Zimmermann MB, Andersson M (2012) Assessment of iodine nutrition in populations: past, present, and future. Nutr Rev 70(10):553–570CrossRefGoogle Scholar
  31. 31.
    Haldimann M, Bochud M, Burnier M, Paccaud F, Dudler V (2015) Prevalence of iodine inadequacy in Switzerland assessed by the estimated average requirement cut-point method in relation to the impact of iodized salt. Public Health Nutr 1333–1342CrossRefGoogle Scholar
  32. 32.
    Bath SC, Sleeth ML, McKenna M, Walter A, Taylor A, Rayman MP (2014) Iodine intake and status of UK women of childbearing age recruited at the University of Surrey in the winter. Br J Nutr 112(10):1715–1723CrossRefGoogle Scholar
  33. 33.
    Rohner F, Zimmermann M, Jooste P, Pandav C, Caldwell K, Raghavan R, Raiten DJ (2014) Biomarkers of nutrition for development—iodine review. J Nutr 144(8):1322S–1342SCrossRefGoogle Scholar
  34. 34.
    Montero-Pedrazuela A, Venero C, Lavado-Autric R, Fernández-Lamo I, García-Verdugo JM, Bernal J, Guadaño-Ferraz A (2006) Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior. Mol Psychiatry 11(4):361–371CrossRefGoogle Scholar
  35. 35.
    Hetzel BS (1983) Iodine deficiency disorders (IDD) and their eradication. Lancet 2(8359):1126–1129CrossRefGoogle Scholar
  36. 36.
    German Nutrition Society (2002) Reference values for nutrient intake, 1st edn. Umschau Braus, Frankfurt am MainGoogle Scholar
  37. 37.
    Johner SA, Thamm M, Nöthlings U, Remer T (2013) Iodine status in preschool children and evaluation of major dietary iodine sources: a German experience. Eur J Nutr 52(7):1711–1719CrossRefGoogle Scholar
  38. 38.
    European Commission Implementation of the EU salt reduction framework (2012) Results of the member state surveys. http://ec.europa.eu/health/nutrition_physical_activity/docs/salt_report_en.pdf. Accessed 27 Jan 15

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.IEL-Nutritional Epidemiology, DONALD Study Centre at the Research Institute of Child NutritionUniversity of BonnDortmundGermany
  2. 2.Central Epidemiology Laboratory, Department of Epidemiology and Health MonitoringRobert Koch InstituteBerlinGermany
  3. 3.Health of Children and Adolescents, Prevention Concepts, Department of Epidemiology and Health MonitoringRobert Koch InstituteBerlinGermany

Personalised recommendations