European Journal of Nutrition

, Volume 55, Issue 3, pp 1261–1274 | Cite as

Green tea polyphenol extract in vivo attenuates inflammatory features of neutrophils from obese rats

  • K. F. F. S. Albuquerque
  • M. P. Marinovic
  • A. C. Morandi
  • A. P. Bolin
  • R. OttonEmail author
Original Contribution



Our study aimed to evaluate whether obesity induced by cafeteria diet changes the neutrophil effector/inflammatory function and whether treatment with green tea extract (GT) can improve neutrophil function.


Male Wistar rats were treated with GT by gavage (12 weeks/5 days/week; 500 mg/kg of body weight), and obesity was induced by cafeteria diet (8 weeks). Neutrophils were obtained from the peritoneal cavity (injection of oyster glycogen). The following analyses were performed: phagocytic capacity, chemotaxis, myeloperoxidase activity (MPO), hypochlorous acid (HOCl), superoxide anion (O 2 ·− ), hydrogen peroxide (H2O2), IL-1β, IL-6 and TNFα, mRNA levels of inflammatory genes, calcium mobilisation, activities of antioxidant enzymes, hexokinase and G6PDH.


Neutrophils from obese rats showed a significant decrease in migration capacity, H2O2 and HOCl production, MPO activity and O 2 ·− production. Phagocytosis and CD11b mRNA levels were increased, while inflammatory cytokines release remained unmodified. mRNA levels of TLR4 and IκK were enhanced. Treatment of obese rats with GT increased neutrophil migration, MPO activity, H2O2, HOCl and O 2 ·− production, whereas TNF-α and IL-6 were decreased (versus obese). Similar reductions in TLR4, IκK and CD11b mRNA were observed. Catalase and hexokinase were increased by obesity, while SOD and G6PDH were decreased. Treatment with GT reduced catalase and increased the GSH/GSSG ratio.


In response to a cafeteria diet, we found a decreased chemotaxis, H2O2 release, MPO activity and HOCl production. We also showed a significant immunomodulatory effect of GT on the obese condition recovering some of these factors such H2O2 and HOCl production, also reducing the levels of inflammatory cytokines.


Obesity Immune system Polyphenols Reactive oxygen species Flavonoids Catechins 



The authors are indebted to the constant assistance of Macedo, RCS, and Molina, N. This research was supported by the São Paulo Research Foundation (FAPESP, Process No. 2011/19216-8), Cruzeiro do Sul University and the National Council for Scientific and Technological Development (CNPq).

Conflict of interest



  1. 1.
    Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846CrossRefGoogle Scholar
  2. 2.
    Richardson VR, Smith KA, Carter AM (2013) Adipose tissue inflammation: feeding the development of type 2 diabetes mellitus. Immunobiology 218(12):1497–1504CrossRefGoogle Scholar
  3. 3.
    Kurukulasuriya LR, Stas S, Lastra G, Manrique C, Sowers JR (2011) Hypertension in obesity. Med Clin N Am 95(5):903–917CrossRefGoogle Scholar
  4. 4.
    Matsuzawa Y, Funahashi T, Nakamura T (2011) The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb 18(8):629–639CrossRefGoogle Scholar
  5. 5.
    Nanchahal K, Morris JN, Sullivan LM, Wilson PW (2005) Coronary heart disease risk in men and the epidemic of overweight and obesity. Int J Obes (Lond). 29(3):317–323CrossRefGoogle Scholar
  6. 6.
    Vucenik I, Stains JP (2012) Obesity and cancer risk: evidence, mechanisms, and recommendations. Ann N Y Acad Sci 1271:37–43CrossRefGoogle Scholar
  7. 7.
    Johnson AR, Milner JJ, Makowski L (2012) The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev 249(1):218–238CrossRefGoogle Scholar
  8. 8.
    Downey GP, Fukushima T, Fialkow L (1995) Signaling mechanisms in human neutrophils. Curr Opin Hematol 2(1):76–88CrossRefGoogle Scholar
  9. 9.
    Trottier MD, Naaz A, Kacynski K, Yenumula PR, Fraker PJ (2012) Functional capacity of neutrophils from class III obese patients. Obesity 20(5):1057–1065CrossRefGoogle Scholar
  10. 10.
    Palmblad J, Hallberg D, Engstedt L (1980) Polymorphonuclear (PMN) function after small intestinal shunt operation for morbid obesity. Br J Haematol 44(1):101–108CrossRefGoogle Scholar
  11. 11.
    Kamp VM, Langereis JD, van Aalst CW, van der Linden JA, Ulfman LH, Koenderman L (2013) Physiological concentrations of leptin do not affect human neutrophils. PLoS One 8(9):e73170CrossRefGoogle Scholar
  12. 12.
    Noels H, Weber C (2011) Catching up with important players in atherosclerosis: type I interferons and neutrophils. Curr Opin Lipidol 22(2):144–145CrossRefGoogle Scholar
  13. 13.
    Rummel C, Inoue W, Poole S, Luheshi GN (2010) Leptin regulates leukocyte recruitment into the brain following systemic LPS-induced inflammation. Mol Psychiatry 15(5):523–534CrossRefGoogle Scholar
  14. 14.
    Seitz O, Schurmann C, Hermes N, Muller E, Pfeilschifter J, Frank S et al (2010) Wound healing in mice with high-fat diet- or ob gene-induced diabetes-obesity syndromes: a comparative study. Exp Diabetes Res 2010:476969CrossRefGoogle Scholar
  15. 15.
    Lin J, Della-Fera MA, Baile CA (2005) Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes Res 13(6):982–990CrossRefGoogle Scholar
  16. 16.
    Fujimura Y, Tachibana H, Yamada K (2001) A tea catechin suppresses the expression of the high-affinity IgE receptor Fc epsilon RI in human basophilic KU812 cells. J Agric Food Chem 49(5):2527–2531CrossRefGoogle Scholar
  17. 17.
    Shin HY, Kim SH, Jeong HJ, Kim SY, Shin TY, Um JY et al (2007) Epigallocatechin-3-gallate inhibits secretion of TNF-alpha, IL-6 and IL-8 through the attenuation of ERK and NF-kappaB in HMC-1 cells. Int Arch Allergy Immunol 142(4):335–344CrossRefGoogle Scholar
  18. 18.
    Akhtar N, Haqqi TM (2011) Epigallocatechin-3-gallate suppresses the global interleukin-1beta-induced inflammatory response in human chondrocytes. Arthritis Res Ther 13(3):R93CrossRefGoogle Scholar
  19. 19.
    Byun EB, Choi HG, Sung NY, Byun EH (2012) Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells. Biochem Biophys Res Commun 426(4):480–485CrossRefGoogle Scholar
  20. 20.
    Cooper R, Morre DJ, Morre DM (2005) Medicinal benefits of green tea: part I. Review of noncancer health benefits. J Altern Complement Med 11(3):521–528CrossRefGoogle Scholar
  21. 21.
    Yang TT, Koo MW (2000) Inhibitory effect of Chinese green tea on endothelial cell-induced LDL oxidation. Atherosclerosis 148(1):67–73CrossRefGoogle Scholar
  22. 22.
    Singh T, Katiyar SK (2011) Green tea catechins reduce invasive potential of human melanoma cells by targeting COX-2, PGE2 receptors and epithelial-to-mesenchymal transition. PLoS One 6(10):e25224CrossRefGoogle Scholar
  23. 23.
    Chan MM, Fong D, Ho CT, Huang HI (1997) Inhibition of inducible nitric oxide synthase gene expression and enzyme activity by epigallocatechin gallate, a natural product from green tea. Biochem Pharmacol 54(12):1281–1286CrossRefGoogle Scholar
  24. 24.
    Al-Amri JS, Hagras MM, Mohamed IM (2013) Effect of epigallocatechin-3-gallate on inflammatory mediators release in LPS-induced Parkinson’s disease in rats. Indian J Exp Biol 51(5):357–362Google Scholar
  25. 25.
    Chacko SM, Thambi PT, Kuttan R, Nishigaki I (2010) Beneficial effects of green tea: a literature review. Chin Med 5:13CrossRefGoogle Scholar
  26. 26.
    Schmidt M, Schmitz HJ, Baumgart A, Guedon D, Netsch MI, Kreuter MH et al (2005) Toxicity of green tea extracts and their constituents in rat hepatocytes in primary culture. Food Chem Toxicol 43(2):307–314CrossRefGoogle Scholar
  27. 27.
    Bode AM, Dong Z (2009) Epigallocatechin 3-gallate and green tea catechins: united they work, divided they fail. Cancer Prev Res 2(6):514–517CrossRefGoogle Scholar
  28. 28.
    Sano M, Tabata M, Suzuki M, Degawa M, Miyase T, Maeda-Yamamoto M (2001) Simultaneous determination of twelve tea catechins by high-performance liquid chromatography with electrochemical detection. Analyst 126(6):816–820CrossRefGoogle Scholar
  29. 29.
    Marin DP, Bolin AP, Macedo Rde C, Sampaio SC, Otton R (2011) ROS production in neutrophils from alloxan-induced diabetic rats treated in vivo with astaxanthin. Int Immunopharmacol 11(1):103–109CrossRefGoogle Scholar
  30. 30.
    Morandi AC, Molina N, Guerra BA, Bolin AP, Otton R (2014) Fucoxanthin in association with vitamin C acts as modulators of human neutrophil function. Eur J Nutr 53(3):779–792CrossRefGoogle Scholar
  31. 31.
    Guerra BA, Bolin AP, Morandi AC, Otton R (2012) Glycolaldehyde impairs neutrophil biochemical parameters by an oxidative and calcium-dependent mechanism—protective role of antioxidants astaxanthin and vitamin C. Diabetes Res Clin Pract 98(1):108–118CrossRefGoogle Scholar
  32. 32.
    Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vasquez-Vivar J et al (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34(11):1359–1368CrossRefGoogle Scholar
  33. 33.
    Hatanaka E, Levada-Pires AC, Pithon-Curi TC, Curi R (2006) Systematic study on ROS production induced by oleic, linoleic, and gamma-linolenic acids in human and rat neutrophils. Free Radic Biol Med 41(7):1124–1132CrossRefGoogle Scholar
  34. 34.
    Dypbukt JM, Bishop C, Brooks WM, Thong B, Eriksson H, Kettle AJ (2005) A sensitive and selective assay for chloramine production by myeloperoxidase. Free Radic Biol Med 39(11):1468–1477CrossRefGoogle Scholar
  35. 35.
    Otton R, Graziola F, Souza JA, Curi TC, Hirata MH, Curi R (1998) Effect of dietary fat on lymphocyte proliferation and metabolism. Cell Biochem Funct 16(4):253–259CrossRefGoogle Scholar
  36. 36.
    Ewing JF, Janero DR (1995) Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal Biochem 232(2):243–248CrossRefGoogle Scholar
  37. 37.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  38. 38.
    Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490CrossRefGoogle Scholar
  39. 39.
    Mannervik B (1985) Glutathione peroxidase. Methods Enzymol 113:490–495CrossRefGoogle Scholar
  40. 40.
    Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72(11):1439–1452CrossRefGoogle Scholar
  41. 41.
    Crabtree B, Newsholme EA (1972) The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenases in muscles from vertebrates and invertebrates. Biochem J 126(1):49–58CrossRefGoogle Scholar
  42. 42.
    Otton R, Marin DP, Bolin AP, Santos Rde C, Polotow TG, Sampaio SC et al (2010) Astaxanthin ameliorates the redox imbalance in lymphocytes of experimental diabetic rats. Chem Biol Interact 186(3):306–315CrossRefGoogle Scholar
  43. 43.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450Google Scholar
  44. 44.
    Innis MS, Myambo KB, Gelfand DH, Brown MA (1992) DNA sequencing with Thermus acquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. 1988. Biotechnology 24:6–10Google Scholar
  45. 45.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  46. 46.
    Caldefie-Chezet F, Poulin A, Tridon A, Sion B, Vasson MP (2001) Leptin: a potential regulator of polymorphonuclear neutrophil bactericidal action? J Leukoc Biol 69(3):414–418Google Scholar
  47. 47.
    Schuster DP, Brody SL, Zhou Z, Bernstein M, Arch R, Link D et al (2007) Regulation of lipopolysaccharide-induced increases in neutrophil glucose uptake. Am J Physiol Lung Cell Mol Physiol 292(4):L845–L851CrossRefGoogle Scholar
  48. 48.
    Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270(28):16483–16486CrossRefGoogle Scholar
  49. 49.
    Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T et al (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76(6):1025–1037CrossRefGoogle Scholar
  50. 50.
    Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12(8):695–708CrossRefGoogle Scholar
  51. 51.
    Phillipson M, Kubes P (2011) The neutrophil in vascular inflammation. Nat Med 17(11):1381–1390CrossRefGoogle Scholar
  52. 52.
    Dal-Secco D, Cunha TM, Freitas A, Alves-Filho JC, Souto FO, Fukada SY et al (2008) Hydrogen sulfide augments neutrophil migration through enhancement of adhesion molecule expression and prevention of CXCR2 internalization: role of ATP-sensitive potassium channels. J Immunol 181(6):4287–4298CrossRefGoogle Scholar
  53. 53.
    Hong Byun E, Fujimura Y, Yamada K, Tachibana H (2010) TLR4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kDa laminin receptor. J Immunol 185(1):33–45CrossRefGoogle Scholar
  54. 54.
    Joo SY, Song YA, Park YL, Myung E, Chung CY, Park KJ et al (2012) Epigallocatechin-3-gallate inhibits LPS-induced NF-kappaB and MAPK signaling pathways in bone marrow-derived macrophages. Gut Liver 6(2):188–196CrossRefGoogle Scholar
  55. 55.
    Moore SI, Huffnagle GB, Chen GH, White ES, Mancuso P (2003) Leptin modulates neutrophil phagocytosis of Klebsiella pneumoniae. Infect Immun 71(7):4182–4185CrossRefGoogle Scholar
  56. 56.
    Hed J, Berg O, Forslid J, Hallden G, Larka-Rafner G (1988) The expression of CR1 and CR3 on non-modulated and modulated granulocytes of healthy blood donors as measured by flow cytofluorometry. Scand J Immunol 28(3):339–344CrossRefGoogle Scholar
  57. 57.
    O’Shea JJ, Siwik SA, Gaither TA, Frank MM (1985) Activation of the C3b receptor: effect of diacylglycerols and calcium mobilization. J Immunol 135(5):3381–3387Google Scholar
  58. 58.
    Fujimura Y, Tachibana H, Yamada K (2004) Lipid raft-associated catechin suppresses the FcepsilonRI expression by inhibiting phosphorylation of the extracellular signal-regulated kinase1/2. FEBS Lett 556(1–3):204–210CrossRefGoogle Scholar
  59. 59.
    Winterbourn CC, Hampton MB, Livesey JH, Kettle AJ (2006) Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J Biol Chem 281(52):39860–39869CrossRefGoogle Scholar
  60. 60.
    Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192(1):1–15CrossRefGoogle Scholar
  61. 61.
    Roberts CK, Barnard RJ, Sindhu RK, Jurczak M, Ehdaie A, Vaziri ND (2006) Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 55(7):928–934CrossRefGoogle Scholar
  62. 62.
    Li GX, Chen YK, Hou Z, Xiao H, Jin H, Lu G et al (2010) Pro-oxidative activities and dose–response relationship of (-)-epigallocatechin-3-gallate in the inhibition of lung cancer cell growth: a comparative study in vivo and in vitro. Carcinogenesis 31(5):902–910CrossRefGoogle Scholar
  63. 63.
    Tsuchiya M, Suematsu M, Suzuki H (1994) In vivo visualization of oxygen radical-dependent photoemission. Methods Enzymol 233:128–140CrossRefGoogle Scholar
  64. 64.
    Keston AS, Brandt R (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11:1–5CrossRefGoogle Scholar
  65. 65.
    Wu KJ, Hsieh MT, Wu CR, Wood WG, Chen YF (2012). Green tea extract ameliorates learning and memory deficits in ischemic rats via its active component polyphenol epigallocatechin-3-gallate by modulation of oxidative stress and neuroinflammation. Evid Based Complement Alternat Med. Volume 2012 (2012), Article ID 163106. doi: 10.1155/2012/163106
  66. 66.
    Sang S, Lee MJ, Hou Z, Ho CT, Yang CS (2005) Stability of tea polyphenol (-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J Agric Food Chem 53(24):9478–9484CrossRefGoogle Scholar
  67. 67.
    Castellani LW, Chang JJ, Wang X, Lusis AJ, Reynolds WF (2006) Transgenic mice express human MPO -463G/A alleles at atherosclerotic lesions, developing hyperlipidemia and obesity in -463G males. J Lipid Res 47(7):1366–1377CrossRefGoogle Scholar
  68. 68.
    Nijhuis J, Rensen SS, Slaats Y, van Dielen FM, Buurman WA, Greve JW (2009) Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity 17(11):2014–2018CrossRefGoogle Scholar
  69. 69.
    Winterbourn CC, Kettle AJ (2004) Reactions of superoxide with myeloperoxidase and its products. Jpn J Infect Dis 57(5):S31–S33Google Scholar
  70. 70.
    Hurst JK (2012) What really happens in the neutrophil phagosome? Free Radic Biol Med 53(3):508–520CrossRefGoogle Scholar
  71. 71.
    Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77(5):598–625CrossRefGoogle Scholar
  72. 72.
    Tintinger G, Steel HC, Anderson R (2005) Taming the neutrophil: calcium clearance and influx mechanisms as novel targets for pharmacological control. Clin Exp Immunol 141(2):191–200CrossRefGoogle Scholar
  73. 73.
    Stossel TP (1973) Quantitative studies of phagocytosis. Kinetic effects of cations and heat-labile opsonin. J Cell Biol 58(2):346–356CrossRefGoogle Scholar
  74. 74.
    Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17(18):2205–2232CrossRefGoogle Scholar
  75. 75.
    Hogan PG, Rao A (2007) Dissecting ICRAC, a store-operated calcium current. Trends Biochem Sci 32(5):235–245CrossRefGoogle Scholar
  76. 76.
    Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446(7133):284–287CrossRefGoogle Scholar
  77. 77.
    Nunes P, Demaurex N (2010) The role of calcium signaling in phagocytosis. J Leukoc Biol 88(1):57–68CrossRefGoogle Scholar
  78. 78.
    Klemper MS (1985) An adenosine triphosphate-dependent calcium uptake pump in human neutrophil lysosomes. J Clin Invest 76(1):303–310CrossRefGoogle Scholar
  79. 79.
    Revesz K, Tutto A, Szelenyi P, Konta L (2011) Tea flavan-3-ols as modulating factors in endoplasmic reticulum function. Nutr Res 31(10):731–740CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • K. F. F. S. Albuquerque
    • 1
  • M. P. Marinovic
    • 1
    • 2
  • A. C. Morandi
    • 1
    • 2
  • A. P. Bolin
    • 1
  • R. Otton
    • 1
    • 2
    Email author
  1. 1.Department of Pharmacology, Biomedical Sciences InstituteUniversity of São PauloSão PauloBrazil
  2. 2.Postgraduate Programme, Health Sciences, CBSUniversidade Cruzeiro do SulSão PauloBrazil

Personalised recommendations