European Journal of Nutrition

, Volume 55, Issue 3, pp 997–1010 | Cite as

Multiplatform metabolomic fingerprinting as a tool for understanding hypercholesterolemia in Wistar rats

  • Diana González-Peña
  • Danuta Dudzik
  • Clara Colina-Coca
  • Begoña de Ancos
  • Antonia García
  • Coral Barbas
  • Concepción Sánchez-MorenoEmail author
Original Contribution



The aim was to investigate the impact of hypercholesterolemic diet on the metabolome of male Wistar rats by a multiplatform metabolomic fingerprinting.


Male Wistar rats were fed with two different diets [control (C) and high-cholesterol diet (HC)—containing 2 % cholesterol and 0.5 % cholic acid]. After 7 weeks of experimental feeding, the rats were euthanized for blood collection and plasma recovery. The metabolite fingerprint was then achieved by applying a multiplatform comprising LC–MS, GC–MS and CE–MS.


Multivariate statistical analysis showed a clear separation between the C and HC groups. Individual differences in metabolites were evaluated using univariate statistical analysis, and multiple metabolites were identified and confirmed in the plasma. A global profiling integrates for the first time pathways affected by high-cholesterol diet intake and allowed us to elucidate some of the associated alterations underlying the hypercholesterolemia event in Wistar rats.


HC feeding stimulated the alteration of multiple pathways in Wistar rats, warning of the risk of developing important diseases, which can be modulated by the diet. Further studies are required to investigate the possibilities to revert or ameliorate the negative effects triggered by HC intake.


Atherosclerosis Global profiling High-cholesterol diet Metabolomics Untargeted analysis 



The study was supported by the Spanish Ministry of Science and Innovation [AGL2010-15910 (subprogram ALI)] and the Spanish Ministry of Economy and Competitiveness (CTQ2014-55279-R). The following projects are also acknowledged: Program Consolider-Ingenio 2010, FUN-C-FOOD, CSD2007-00063 (Spanish Ministry of Science and Innovation), and ALIBIRD, S2009/AGR-1469 (Comunidad de Madrid).

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Nichols M, Townsend N, Scarborough P, Rayner M (2013) Cardiovascular disease in Europe: epidemiological update. Eur Heart J 34:3028–3034CrossRefGoogle Scholar
  2. 2.
    Artham SM, Lavie CJ, De Schutter A, Ventura HO, Milani RV (2011) Obesity, age, and cardiac risk. Curr Cardiovasc Risk Rep 5:128–137CrossRefGoogle Scholar
  3. 3.
    Sherzai A, Heim LT, Boothby C, Sherzai AD (2012) Stroke, food groups, and dietary patterns: a systematic review. Nutr Rev 70:423–435CrossRefGoogle Scholar
  4. 4.
    Andersen CJ, Fernandez ML (2013) Dietary strategies to reduce metabolic syndrome. Rev Endocr Metab Disord 14:241–254CrossRefGoogle Scholar
  5. 5.
    van Baak MA (2013) Nutrition as a link between obesity and cardiovascular disease: how can we stop the obesity epidemic? Thromb Haemost 110:689–696CrossRefGoogle Scholar
  6. 6.
    Grosso G, Mistretta A, Frigiola A, Gruttadauria S, Biondi A, Basile F, Vitaglione P, D’Orazio N, Galvano F (2014) Mediterranean diet and cardiovascular risk factors: a systematic review. Crit Rev Food Sci Nutr 54:593–610CrossRefGoogle Scholar
  7. 7.
    Nascimento AR, Machado M, De Jesus N, Gomes F, Lessa MA, Bonomo IT, Tibiriçá E (2013) Structural and functional microvascular alterations in a rat model of metabolic syndrome induced by a high-fat diet. Obesity 21:2046–2054CrossRefGoogle Scholar
  8. 8.
    McEvoy CT, Neville CE, Temple NJ, Woodside JV (2014) Effect of diet on vascular health. Rev Clin Gerontol 24:25–40CrossRefGoogle Scholar
  9. 9.
    Neuhofer A, Wernly B, Leitner L, Sarabi A, Sommer NG, Staffler G, Zeyda M, Stulnig TM (2014) An accelerated mouse model for atherosclerosis and adipose tissue inflammation. Cardiovasc Diabetol 13:23CrossRefGoogle Scholar
  10. 10.
    Mortensen A, Sorensen IK, Wilde C, Dragoni S, Mullerová D, Toussaint O, Zloch Z, Sgaragli G, Ovesná J (2008) Biological models for phytochemical research: from cell to human organism. Br J Nutr 99:ES118–ES126CrossRefGoogle Scholar
  11. 11.
    Rideout TC, Harding SV, Jones PJH, Fan MZ (2008) Guar gum and similar soluble fibers in the regulation of cholesterol metabolism: current understandings and future research priorities. Vasc Health Risk Manag 4:1023–1033Google Scholar
  12. 12.
    Nørskov NP, Hedemann MS, Lærke HN, Knudsen KEB (2013) Multicompartmental nontargeted LC–MS metabolomics: explorative study on the metabolic responses of rye fiber versus refined wheat fiber intake in plasma and urine of hypercholesterolemic pigs. J Proteome Res 12:2818–2832CrossRefGoogle Scholar
  13. 13.
    Hanhineva K, Barri T, Kolehmainen M, Pekkinen J, Pihlajamäki J, Vesterbacka A, Solano-Aguilar G, Mykkänen H, Dragsted LO, Urban JF Jr et al (2013) Comparative nontargeted profiling of metabolic changes in tissues and biofluids in high-fat diet-fed Ossabaw pig. J Proteome Res 12:3980–3992CrossRefGoogle Scholar
  14. 14.
    Ramprasath VR, Jones PJH, Buckley DD, Woollett LA, Heubi JE (2013) Effect of dietary sphingomyelin on absorption and fractional synthetic rate of cholesterol and serum lipid profile in humans. Lipids Health Dis 12:125CrossRefGoogle Scholar
  15. 15.
    He W-S, Wang M-G, Pan X-X, Li J-J, Jia C-S, Zhang X-M, Feng B (2013) Role of plant stanol derivatives in the modulation of cholesterol metabolism and liver gene expression in mice. Food Chem 140:9–16CrossRefGoogle Scholar
  16. 16.
    Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7:128–139CrossRefGoogle Scholar
  17. 17.
    Armitage EG, Rupérez FJ, Barbas C (2013) Metabolomics of diet-related diseases using mass spectrometry. Trac-Trends Anal Chem 52:61–73CrossRefGoogle Scholar
  18. 18.
    Brennan L (2013) Metabolomics in nutrition research: current status and perspectives. Biochem Soc Trans 41:670–673CrossRefGoogle Scholar
  19. 19.
    Kouskoumvekaki I, Panagiotou G (2011) Navigating the human metabolome for biomarker identification and design of pharmaceutical molecules. J Biomed Biotechnol Article ID 525497 Google Scholar
  20. 20.
    Ciborowski M, Ruperez JF, Martinez-Alcazar MP, Angulo S, Radziwon P, Olszanski R, Kloczko J, Barbas C (2010) Metabolomic approach with LC-MS reveals significant effect of pressure on diver’s plasma. J Proteome Res 9:4131–4137CrossRefGoogle Scholar
  21. 21.
    Vallejo M, García A, Tunon J, Garcia-Martinez D, Angulo S, Martin-Ventura JL, Blanco-Colio LM, Almeida P, Egido J, Barbas C (2009) Plasma fingerprinting with GC–MS in acute coronary syndrome. Anal Bioanal Chem 394:1517–1524CrossRefGoogle Scholar
  22. 22.
    Naz S, García A, Rusak M, Barbas C (2013) Method development and validation for rat serum fingerprinting with CE–MS: application to ventilator-induced-lung-injury study. Anal Bioanal Chem 405:4849–4858CrossRefGoogle Scholar
  23. 23.
    Gika HG, Macpherson E, Theodoridis GA, Wilson ID (2008) Evaluation of the repeatability of ultra-performance liquid chromatography–TOF–MS for global metabolic profiling of human urine samples. J Chromatogr B 871:299–305CrossRefGoogle Scholar
  24. 24.
    García A, Barbas C (2011) Gas chromatography–mass spectrometry (GC–MS)-based metabolomics. Methods Mol Biol 708:191–204CrossRefGoogle Scholar
  25. 25.
    Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4:81–89CrossRefGoogle Scholar
  26. 26.
    Llorach R, Garcia-Aloy M, Tulipani S, Vazquez-Fresno R, Andres-Lacueva C (2012) Nutrimetabolomic strategies to develop new biomarkers of intake and health effects. J Agric Food Chem 60:8797–8808CrossRefGoogle Scholar
  27. 27.
    Rezzi S, Collino S, Goulet L, Martin F-P (2013) Metabonomic approaches to nutrient metabolism and future molecular nutrition. Trac-Trends Anal Chem 52:112–119CrossRefGoogle Scholar
  28. 28.
    Tajima R, Kodama S, Hirata M, Horikawa C, Fujihara K, Yachi Y, Yoshizawa S, Iida KT, Sone H (2014) High cholesterol intake is associated with elevated risk of type 2 diabetes mellitus—a meta-analysis. Clin Nutr. doi: 10.1016/j.clnu.2014.03.001 Google Scholar
  29. 29.
    Yasutake K, Kohjima M, Kotoh K, Nakashima M, Nakamuta M, Enjoji M (2014) Dietary habits and behaviors associated with nonalcoholic fatty liver disease. World J Gastroenterol 20:1756–1767CrossRefGoogle Scholar
  30. 30.
    Gylling H (2014) Clinical utility of serum markers of cholesterol absorption and synthesis. Curr Opin Lipidol 25:207–212CrossRefGoogle Scholar
  31. 31.
    McNamara DJ (2000) Dietary cholesterol and atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 1529:310–320CrossRefGoogle Scholar
  32. 32.
    Staels B, Fonseca VA (2009) Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care 32:S237–S245CrossRefGoogle Scholar
  33. 33.
    Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K (2008) Targeting bile-acid signaling for metabolic diseases. Nat Rev Drug Discov 7:678–693CrossRefGoogle Scholar
  34. 34.
    Reboul E, Goncalves A, Comera C, Bott R, Nowicki M, Landrier J-F, Jourdheuil-Rahmani D, Dufour C, Collet X, Borel P (2011) Vitamin D intestinal absorption is not a simple passive diffusion: evidences for involvement of cholesterol transporters. Mol Nutr Food Res 55:691–702CrossRefGoogle Scholar
  35. 35.
    Miñambres I, Sánchez-Quesada JL, Sánchez-Hernández J, Rodríguez J, De Leiva A, Pérez A (2014) Vitamin D concentrations in familial combined hyperlipidemia: effects of lipid lowering treatment. Diabetol Metab Syndr 6: Article number 7Google Scholar
  36. 36.
    Huang Y, Li X, Wang M, Ning H, Lima A, Li Y, Sun C (2013) Lipoprotein lipase links vitamin D, insulin resistance, and type 2 diabetes: a cross-sectional epidemiological study. Cardiovasc Diabetol 12: Article number 17Google Scholar
  37. 37.
    Yin K, Agrawal DK (2014) Vitamin D and inflammatory diseases. J Inflamm Res 7:69–87Google Scholar
  38. 38.
    D’Arrigo P, Servi S (2010) Synthesis of lysophospholipids. Molecules 15:1354–1377CrossRefGoogle Scholar
  39. 39.
    Goyal J, Wang K, Liu M, Subbaiah PV (1997) Novel function of lecithin–cholesterol acyltransferase: hydrolysis of oxidized polar phospholipids generated during lipoprotein oxidation. J Biol Chem 272:16231–16239CrossRefGoogle Scholar
  40. 40.
    Calabresi L, Simonelli S, Conca P, Busnach G, Cabibbe M, Gesualdo L, Gigante M, Penco S, Veglia F, Franceschini G (2014) Acquired lecithin:cholesterol acyltransferase deficiency as a major factor in lowering plasma HDL levels in chronic kidney disease. J Intern Med. doi: 10.1111/joim.12290 Google Scholar
  41. 41.
    Schaefer EJ, Anthanont P, Asztalos BF (2014) High-density lipoprotein metabolism, composition, function, and deficiency. Curr Opin Lipidol 25:194–199CrossRefGoogle Scholar
  42. 42.
    Sekas G, Patton GM, Lincoln EC, Robins SJ (1985) Origin of plasma lysophosphatidylcholine: evidence for direct hepatic secretion in the rat. J Lab Clin Med 105:190–194Google Scholar
  43. 43.
    Taylor LA, Arends J, Hodina AK, Unger K, Massing U (2007) Plasma lysophosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids Health Dis 6:17CrossRefGoogle Scholar
  44. 44.
    Spector AA (2009) Arachidonic acid cytochrome P450 epoxygenase pathway. J Lipid Res 50:S52–S56CrossRefGoogle Scholar
  45. 45.
    Khanapure SP, Garvey DS, Janero DR, Letts LG (2007) Eicosanoids in inflammation: biosynthesis, pharmacology, and therapeutic frontiers. Curr Top Med Chem 7:311–340CrossRefGoogle Scholar
  46. 46.
    Das UN (2013) Arachidonic acid and lipoxin A4 as possible endogenous anti-diabetic molecules. Prostaglandins Leukot Essent Fatty Acids 88:201–210CrossRefGoogle Scholar
  47. 47.
    Shoji T, Kakiya R, Hayashi T, Tsujimoto Y, Sonoda M, Shima H, Mori K, Fukumoto S, Tahara H, Shioi A et al (2013) Serum n-3 and n-6 polyunsaturated fatty acid profile as an independent predictor of cardiovascular events in hemodialysis patients. Am J Kidney Dis 62:568–576CrossRefGoogle Scholar
  48. 48.
    Astudillo AM, Balgoma D, Balboa MA, Balsinde J (2012) Dynamics of arachidonic acid mobilization by inflammatory cells. Biochim Biophys Acta Mol Cell Biol Lipids 1821:249–256CrossRefGoogle Scholar
  49. 49.
    Nakamura MT, Nara TY (2004) Structure, function, and dietary regulation of Delta 6, Delta 5, and Delta 9 desaturases. Annu Rev Nutr 24:345–376CrossRefGoogle Scholar
  50. 50.
    Kocsis K, Knapp L, Gellért L, Oláh G, Kis Z, Takakuwa H, Iwamori N, Ono E, Toldi J, Farkas T (2014) Acetyl-l-carnitine normalizes the impaired long-term potentiation and spine density in a rat model of global ischemia. Neurosciences 269:265–272CrossRefGoogle Scholar
  51. 51.
    Luo T, Li J, Li L, Yang B, Liu C, Zheng Q, Jin B, Chen Z, Li K, Zhang X, Zhang J (2013) A study on the efficacy and safety assessment of propionyl-l-carnitine tablets in treatment of intermittent claudication. Thromb Res 132:427–432CrossRefGoogle Scholar
  52. 52.
    Schooneman MG, Vaz FM, Houten SM, Soeters MR (2013) Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes 62:1–8CrossRefGoogle Scholar
  53. 53.
    Cardounel AJ, Cui H, Samouilov A, Johnson W, Kearns P, Tsai AL, Berka V, Zweier JL (2007) Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J Biol Chem 282:879–887CrossRefGoogle Scholar
  54. 54.
    Cooke JP (2000) Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol 20:2032–2037CrossRefGoogle Scholar
  55. 55.
    Cooke JP (2005) ADMA: its role in vascular disease. Vasc Med 10:S11–S17CrossRefGoogle Scholar
  56. 56.
    Laleman W, Omasta A, van de Casteele M, Zeegers M, Vander Elst I, Van Landeghem L, Severi T, van Pelt J, Roskams T, Fevery J, Nevens F (2005) A role for asymmetric dimethylarginine in the pathophysiology of portal hypertension in rats with biliary cirrhosis. Hepatology 42:1382–1390CrossRefGoogle Scholar
  57. 57.
    Baylis C (2006) Arginine, arginine analogs and nitric oxide production in chronic kidney disease. Nat Clin Pract Nephrol 2:209–220CrossRefGoogle Scholar
  58. 58.
    Perticone F, Sciacqua A, Maio R, Perticone M, Galiano Leone G, Bruni R, Di Cello S, Pascale A, Talarico G, Greco L, Andreozzi F, Sesti G (2010) Endothelial dysfunction, ADMA and insulin resistance in essential hypertension. Int J Cardiol 142:236–241CrossRefGoogle Scholar
  59. 59.
    Celik M, Cerrah S, Arabul M, Akalin A (2014) Relation of asymmetric dimethylarginine levels to macrovascular disease and inflammation markers in type 2 diabetic patients. J Diabetes Res Article number 139215Google Scholar
  60. 60.
    Nishiyama Y, Otsuka T, Ueda M, Inagaki H, Muraga K, Abe A, Kawada T, Katayama Y (2014) Asymmetric dimethylarginine is related to the predicted stroke risk in middle-aged Japanese men. J Neurol Sci 338:87–91CrossRefGoogle Scholar
  61. 61.
    Sheen J-M, Chen Y-C, Tain Y-L, Huang L-T (2014) Increased circulatory asymmetric dimethylarginine and multiple organ failure: bile duct ligation in rat as a model. Int J Mol Sci 15:3989–4006CrossRefGoogle Scholar
  62. 62.
    Pawlak D, Tankiewicz A, Buczko W (2001) Kynurenine and its metabolites in the rat with experimental renal insufficiency. J Physio Pharmacol 52:755–766Google Scholar
  63. 63.
    Pawlak K, Myśliwiec M, Pawlak D (2010) Kynurenine pathway—a new link between endothelial dysfunction and carotid atherosclerosis in chronic kidney disease patients. Adv Med Sci 55:196–203CrossRefGoogle Scholar
  64. 64.
    Fan C-Y, Wang M-X, Ge C-X, Wang X, Li J-M, Kong L-D (2014) Betaine supplementation protects against high-fructose-induced renal injury in rats. J Nutr Biochem 25:353–362CrossRefGoogle Scholar
  65. 65.
    Deminice R, Troncon F, Jordao AA (2013) Methionine and methylation balance: pathways for the production and removal of homocysteine. In: Deminice R, Rosa FR, Jordao AA, Snegursky A (eds) Methionine: biosynthesis, chemical structure and toxicity. Nova Science Publishers, Hauppauge, pp 9–25Google Scholar
  66. 66.
    Tozzi MG, Camici M, Mascia L, Sgarrella F, Ipata PL (2006) Pentose phosphates in nucleoside interconversion and catabolism. FEBS J 273:1089–1101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Diana González-Peña
    • 1
  • Danuta Dudzik
    • 2
  • Clara Colina-Coca
    • 1
  • Begoña de Ancos
    • 1
  • Antonia García
    • 2
  • Coral Barbas
    • 2
  • Concepción Sánchez-Moreno
    • 1
    Email author
  1. 1.Institute of Food Science, Technology and Nutrition (ICTAN)Spanish National Research Council (CSIC)MadridSpain
  2. 2.Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of PharmacySan Pablo CEU UniversityMadridSpain

Personalised recommendations