European Journal of Nutrition

, Volume 55, Issue 1, pp 207–217 | Cite as

Effect of l-carnitine supplementation on the body carnitine pool, skeletal muscle energy metabolism and physical performance in male vegetarians

  • Katerina Novakova
  • Oliver Kummer
  • Jamal Bouitbir
  • Sonja D. Stoffel
  • Ulrike Hoerler-Koerner
  • Michael Bodmer
  • Paul Roberts
  • Albert Urwyler
  • Rolf Ehrsam
  • Stephan KrähenbühlEmail author
Original Contribution



More than 95 % of the body carnitine is located in skeletal muscle, where it is essential for energy metabolism. Vegetarians ingest less carnitine and carnitine precursors and have lower plasma carnitine concentrations than omnivores. Principle aims of the current study were to assess the plasma and skeletal muscle carnitine content and physical performance of male vegetarians and matched omnivores under basal conditions and after l-carnitine supplementation.


Sixteen vegetarians and eight omnivores participated in this interventional study with oral supplementation of 2 g l-carnitine for 12 weeks. Before carnitine supplementation, vegetarians had a 10 % lower plasma carnitine concentration, but maintained skeletal muscle carnitine stores compared to omnivores. Skeletal muscle phosphocreatine, ATP, glycogen and lactate contents were also not different from omnivores. Maximal oxygen uptake (VO2max) and workload (P max) per bodyweight (bicycle spiroergometry) were not significantly different between vegetarians and omnivores. Sub-maximal exercise (75 % VO2max for 1 h) revealed no significant differences between vegetarians and omnivores (respiratory exchange ratio, blood lactate and muscle metabolites). Supplementation with l-carnitine significantly increased the total plasma carnitine concentration (24 % in omnivores, 31 % in vegetarians) and the muscle carnitine content in vegetarians (13 %). Despite this increase, P max and VO2max as well as muscle phosphocreatine, lactate and glycogen were not significantly affected by carnitine administration.


Vegetarians have lower plasma carnitine concentrations, but maintained muscle carnitine stores compared to omnivores. Oral l-carnitine supplementation normalizes the plasma carnitine stores and slightly increases the skeletal muscle carnitine content in vegetarians, but without affecting muscle function and energy metabolism.


Vegetarians l-carnitine supplementation Spiroergometry Skeletal muscle Energy metabolism 



We would like to thank Beatrice Vetter, Liliane Todesco and Réjane Morand for performing biochemical analyses. We also express our appreciation to the Lonza Group, Basel, Switzerland, especially toward Miss Ulla Freitas for critically reading the manuscript and for supporting this research financially. The study was financially supported by a Grant from the Swiss National Science Foundation (31003A_132992/1) to SK. Lonza provided the carnitine tartrate capsules and part of the salary of one of the co-authors (P. Roberts). Lonza had no impact on the protocol, but received a prefinal version of the manuscript and could give comments before publication.

Conflict of interest

None of the authors reports any conflict of interest regarding this manuscript.

Supplementary material

394_2015_838_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)


  1. 1.
    McEvoy CT, Temple N, Woodside JV (2012) Vegetarian diets, low-meat diets and health: a review. Public Health Nutr 15:2287–2294. doi: 10.1017/s1368980012000936 CrossRefGoogle Scholar
  2. 2.
    Tonstad S, Butler T, Yan R, Fraser GE (2009) Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 32:791–796. doi: 10.2337/dc08-1886 CrossRefGoogle Scholar
  3. 3.
    Key TJ, Fraser GE, Thorogood M, Appleby PN, Beral V, Reeves G, Burr ML, Chang-Claude J, Frentzel-Beyme R, Kuzma JW, Mann J, McPherson K (1999) Mortality in vegetarians and nonvegetarians: detailed findings from a collaborative analysis of 5 prospective studies. Am J Clin Nutr 70:516S–524SGoogle Scholar
  4. 4.
    Pormsila W, Krahenbuhl S, Hauser PC (2010) Determination of carnitine in food and food supplements by capillary electrophoresis with contactless conductivity detection. Electrophoresis 31:2186–2191. doi: 10.1002/elps.200900692 CrossRefGoogle Scholar
  5. 5.
    Etzioni A, Levy J, Nitzan M, Erde P, Benderly A (1984) Systemic carnitine deficiency exacerbated by a strict vegetarian diet. Arch Dis Child 59:177–179CrossRefGoogle Scholar
  6. 6.
    Lombard KA, Olson AL, Nelson SE, Rebouche CJ (1989) Carnitine status of lactoovovegetarians and strict vegetarian adults and children. Am J Clin Nutr 50:301–306Google Scholar
  7. 7.
    Rebouche CJ, Lombard KA, Chenard CA (1993) Renal adaptation to dietary carnitine in humans. Am J Clin Nutr 58:660–665Google Scholar
  8. 8.
    Feller AG, Rudman D (1988) Role of carnitine in human nutrition. J Nutr 118:541–547Google Scholar
  9. 9.
    Steiber A, Kerner J, Hoppel CL (2004) Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med 25:455–473. doi: 10.1016/j.mam.2004.06.006 CrossRefGoogle Scholar
  10. 10.
    Stephens FB, Marimuthu K, Cheng Y, Patel N, Constantin D, Simpson EJ, Greenhaff PL (2011) Vegetarians have a reduced skeletal muscle carnitine transport capacity. Am J Clin Nutr 94:938–944. doi: 10.3945/ajcn.111.012047 CrossRefGoogle Scholar
  11. 11.
    Bremer J (1983) Carnitine—metabolism and functions. Physiol Rev 63:1420–1480Google Scholar
  12. 12.
    Fritz IB, Marquis NR (1965) The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes. Proc Natl Acad Sci USA 54:1226–1233CrossRefGoogle Scholar
  13. 13.
    Fritz IB, Mc EB (1959) Effects of carnitine on fatty-acid oxidation by muscle. Science 129:334–335CrossRefGoogle Scholar
  14. 14.
    Brass EP, Hoppel CL (1980) Relationship between acid-soluble carnitine and coenzyme A pools in vivo. Biochem J 190:495–504CrossRefGoogle Scholar
  15. 15.
    Bieber LL, Emaus R, Valkner K, Farrell S (1982) Possible functions of short-chain and medium-chain carnitine acyltransferases. Fed Proc 41:2858–2862Google Scholar
  16. 16.
    Childress CC, Sacktor B (1966) Pyruvate oxidation and the permeability of mitochondria from blowfly flight muscle. Science 154:268–270CrossRefGoogle Scholar
  17. 17.
    Friolet R, Hoppeler H, Krahenbuhl S (1994) Relationship between the coenzyme A and the carnitine pools in human skeletal muscle at rest and after exhaustive exercise under normoxic and acutely hypoxic conditions. J Clin Invest 94:1490–1495CrossRefGoogle Scholar
  18. 18.
    Giamberardino MA, Dragani L, Valente R, Di Lisa F, Saggini R, Vecchiet L (1996) Effects of prolonged l-carnitine administration on delayed muscle pain and CK release after eccentric effort. Int J Sports Med 17:320–324CrossRefGoogle Scholar
  19. 19.
    Rubin MR, Volek JS, Gomez AL, Ratamess NA, French DN, Sharman MJ, Kraemer WJ (2001) Safety measures of l-carnitine l-tartrate supplementation in healthy men. J Strength Cond Res 15:486–490Google Scholar
  20. 20.
    Roberts TJ, Weber JM, Hoppeler H, Weibel ER, Taylor CR (1996) Design of the oxygen and substrate pathways. II. Defining the upper limits of carbohydrate and fat oxidation. J Exp Biol 199:1651–1658Google Scholar
  21. 21.
    Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265:E380–E391Google Scholar
  22. 22.
    Howlett RA, Parolin ML, Dyck DJ, Hultman E, Jones NL, Heigenhauser GJ, Spriet LL (1998) Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Am J Physiol 275:R418–R425Google Scholar
  23. 23.
    Stephens FB, Constantin-Teodosiu D, Greenhaff PL (2007) New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. Journal Physiol 581:431–444. doi: 10.1113/jphysiol.2006.125799 CrossRefGoogle Scholar
  24. 24.
    Wall BT, Stephens FB, Constantin-Teodosiu D, Marimuthu K, Macdonald IA, Greenhaff PL (2011) Chronic oral ingestion of l-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. J Physiol 589:963–973. doi: 10.1113/jphysiol.2010.201343 CrossRefGoogle Scholar
  25. 25.
    Bergman BC, Brooks GA (1999) Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. J Appl Physiol 86:479–487 (Bethesda, Md.: 1985)Google Scholar
  26. 26.
    Gollnick PD, Karlsson J, Piehl K, Saltin B (1974) Selective glycogen depletion in skeletal muscle fibres of man following sustained contractions. J Physiol 241:59–67CrossRefGoogle Scholar
  27. 27.
    Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381Google Scholar
  28. 28.
    Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616CrossRefGoogle Scholar
  29. 29.
    Harris RC, Hultman E, Nordesjo LO (1974) Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest 33:109–120CrossRefGoogle Scholar
  30. 30.
    Olsen C (1971) An enzymatic fluorimetric micromethod for the determination of acetoacetate, β-hydroxybutyrate, pyruvate and lactate. Clin Chim Acta 33:293–300CrossRefGoogle Scholar
  31. 31.
    Mayo Clinic Calorie Calculator. Accessed 09 Dec 2015
  32. 32.
    Stephens FB, Wall BT, Marimuthu K, Shannon CE, Constantin-Teodosiu D, Macdonald IA, Greenhaff PL (2013) Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans. J Physiol 591:4655–4666. doi: 10.1113/jphysiol.2013.255364 CrossRefGoogle Scholar
  33. 33.
    Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, Sai Y, Tsuji A (1998) Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 273:20378–20382CrossRefGoogle Scholar
  34. 34.
    Schurch R, Todesco L, Novakova K, Mevissen M, Stieger B, Krahenbuhl S (2010) The plasma carnitine concentration regulates renal OCTN2 expression and carnitine transport in rats. Eur J Pharmacol 635:171–176. doi: 10.1016/j.ejphar.2010.02.045 CrossRefGoogle Scholar
  35. 35.
    Lennon DL, Shrago ER, Madden M, Nagle FJ, Hanson P (1986) Dietary carnitine intake related to skeletal muscle and plasma carnitine concentrations in adult men and women. Am J Clin Nutr 43:234–238Google Scholar
  36. 36.
    Barnett C, Costill DL, Vukovich MD, Cole KJ, Goodpaster BH, Trappe SW, Fink WJ (1994) Effect of l-carnitine supplementation on muscle and blood carnitine content and lactate accumulation during high-intensity sprint cycling. Int J Sport Nutr 4:280–288Google Scholar
  37. 37.
    Wachter S, Vogt M, Kreis R, Boesch C, Bigler P, Hoppeler H, Krahenbuhl S (2002) Long-term administration of l-carnitine to humans: effect on skeletal muscle carnitine content and physical performance. Clin Chim Acta 318:51–61CrossRefGoogle Scholar
  38. 38.
    Berardi S, Stieger B, Hagenbuch B, Carafoli E, Krahenbuhl S (2000) Characterization of l-carnitine transport into rat skeletal muscle plasma membrane vesicles. Eur J Biochem 267:1985–1994CrossRefGoogle Scholar
  39. 39.
    Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL (2006) An acute increase in skeletal muscle carnitine content alters fuel metabolism in resting human skeletal muscle. J Clin Endocrinol Metab 91:5013–5018. doi: 10.1210/jc.2006-1584 CrossRefGoogle Scholar
  40. 40.
    Barr SI, Rideout CA (2004) Nutritional considerations for vegetarian athletes. Nutrition 20:696–703. doi: 10.1016/j.nut.2004.04.015 (Burbank, Los Angeles County, Calif.)CrossRefGoogle Scholar
  41. 41.
    Venderley AM, Campbell WW (2006) Vegetarian diets: nutritional considerations for athletes. Sports Med 36:293–305 (Auckland, N.Z.)CrossRefGoogle Scholar
  42. 42.
    Raben A, Kiens B, Richter EA, Rasmussen LB, Svenstrup B, Micic S, Bennett P (1992) Serum sex hormones and endurance performance after a lacto-ovo vegetarian and a mixed diet. Med Sci Sports Exerc 24:1290–1297CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Katerina Novakova
    • 1
    • 2
  • Oliver Kummer
    • 1
    • 2
  • Jamal Bouitbir
    • 1
    • 2
  • Sonja D. Stoffel
    • 1
  • Ulrike Hoerler-Koerner
    • 1
  • Michael Bodmer
    • 1
    • 2
  • Paul Roberts
    • 1
    • 2
  • Albert Urwyler
    • 3
  • Rolf Ehrsam
    • 1
  • Stephan Krähenbühl
    • 1
    • 2
    Email author
  1. 1.Division of Clinical Pharmacology and ToxicologyUniversity Hospital BaselBaselSwitzerland
  2. 2.Department of BiomedicineUniversity of BaselBaselSwitzerland
  3. 3.Department of AnesthesiaUniversity Hospital BaselBaselSwitzerland

Personalised recommendations