Advertisement

European Journal of Nutrition

, Volume 55, Issue 1, pp 171–182 | Cite as

Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

  • Cristian Del Bo’
  • Yi Cao
  • Martin Roursgaard
  • Patrizia Riso
  • Marisa Porrini
  • Steffen Loft
  • Peter Møller
Original Contribution

Abstract

Purpose

Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation.

Methods

THP-1-derived macrophages were incubated with fatty acids (500 μM oleic/palmitic acid, 2:1 ratio) and different concentrations (from 0.05 to 10 μg mL−1) of ACN- and PA-rich fractions, pure ACN standards (malvidin, delphinidin and cyanidin 3-glucoside), and metabolites (syringic, gallic and protocatechuic acids). Lipid accumulation was quantified with the fluorescent dye Nile red.

Results

Lipid accumulation was reduced at all concentrations of the ACN-rich fraction tested with a maximum reduction at 10 μg mL−1 (−27.4 %; p < 0.0001). The PA-rich fraction significantly reduced the lipid accumulation only at the low concentrations from 0.05 µg mL−1 to 0.3 µg mL−1, with respect to the control with fatty acids. Supplementation with pure ACN compounds (malvidin and delphinidin-3-glucoside and its metabolic products (syringic and gallic acid)) reduced lipid accumulation especially at the low concentrations, while no significant effect was observed after cyanidin-3-glucoside and protocatechuic acid supplementation.

Conclusions

The results demonstrated a potential role of both the ACN- and PA-rich fractions and single compounds in the lipid accumulation also at concentrations close to that achievable in vivo.

Keywords

Wild blueberry Polyphenols THP-1 macrophages Lipid accumulation 

Notes

Conflict of interest

None of the authors had a personal or financial conflict of interest.

References

  1. 1.
    Nicoué EE, Savard S, Belkacemi K (2007) Anthocyanins in wild blueberries of Quebec: extraction and identification. J Agric Food Chem 55:5626–5635CrossRefGoogle Scholar
  2. 2.
    Veitch NC, Grayer RJ (2011) Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep 28:1626–1695CrossRefGoogle Scholar
  3. 3.
    Andersen OM, Jordheim M (2006) In: Andersen OM, Markham KR (eds) Flavonoids chemistry, biochemistry and applications. CRC Press, Taylor and Francis, Boca Raton, pp 471–551Google Scholar
  4. 4.
    McGhie TK, Walton MC (2007) The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 51:702–713CrossRefGoogle Scholar
  5. 5.
    Tsuda T (2012) Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res 56:159–170CrossRefGoogle Scholar
  6. 6.
    Speciale A, Cimino F, Saija A, Canali R, Virgili F (2014) Bioavailability and molecular activities of anthocyanins as modulators of endothelial function. Genes Nutr 9:404CrossRefGoogle Scholar
  7. 7.
    Jennings A, Welch AA, Fairweather-Tait SJ, Kay C, Minihane AM, Chowienczyk P, Jiang B, Cecelja M, Spector T, Macgregor A, Cassidy A (2012) Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am J Clin Nutr 96:781–788CrossRefGoogle Scholar
  8. 8.
    Miguel MG (2011) Anthocyanins: antioxidants and/or anti-inflammatory activities. JAPS 1:07–15Google Scholar
  9. 9.
    Wu T, Tang Q, Gao Z, Yu Z, Song H, Zheng X, Chen W (2013) Blueberry and mulberry juice prevent obesity development in C57BL/6 mice. Plos One 8:e77585CrossRefGoogle Scholar
  10. 10.
    Chang JJ, Hsu MJ, Huang HP, Chung DJ, Chang YC, Wang CJ (2013) Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. J Agric Food Chem 61:6069–6076CrossRefGoogle Scholar
  11. 11.
    Valenti L, Riso P, Mazzocchi A, Porrini M, Fargion S, Agostoni C (2013) Dietary anthocyanins as nutritional therapy for non alcoholic fatty liver disease. Oxid Med Cell Longev 2013:145421CrossRefGoogle Scholar
  12. 12.
    Jia Y, Hoang MH, Jun HJ, Lee JH, Lee SJ (2013) Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes. Bioorg Med Chem Lett 23:4185–4190CrossRefGoogle Scholar
  13. 13.
    Packard RR, Libby P (2008) Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54:24–38CrossRefGoogle Scholar
  14. 14.
    Chen J, Uto T, Tanigawa S, Kumamoto T, Fujii M, Hou DX (2008) Expression profiling of genes targeted by bilberry (Vaccinium myrtillus) in macrophages through DNA microarray. Nutr Cancer 60(Suppl 1):43–50CrossRefGoogle Scholar
  15. 15.
    Mauray A, Felgines C, Morand C, Mazur A, Scalbert A, Milenkovic D (2010) Nutrigenomic analysis of the protective effects of bilberry anthocyanin-rich extract in apo E-deficient mice. Genes Nutr 5:343–353CrossRefGoogle Scholar
  16. 16.
    Wu X, Kang J, Xie C, Burris R, Ferguson ME, Badger TM, Nagarajan S (2010) Dietary blueberries attenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzyme expression. J Nutr 140:1628–1632CrossRefGoogle Scholar
  17. 17.
    Zanotti I, Dall’Asta M, Mena P, Mele L, Bruni R, Ray S, Del Rio D (2014) Atheroprotective effects of (poly) phenols: a focus on cell cholesterol metabolism. Food Funct. doi: 10.1039/c4fo00670d Google Scholar
  18. 18.
    Manach C, Williamson G, Morand C, Scalbert A, Rémésv C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81(1 Suppl):230S–242SGoogle Scholar
  19. 19.
    Faria A, Fernandes I, Norberto S, Mateus N, Calhau C (2014) Interplay between anthocyanins and gut microbiota. J Agric Food Chem 62:6898–6902CrossRefGoogle Scholar
  20. 20.
    Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, Botting NP, Kay CD (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a13C-tracer study. Am J Clin Nutr 97:995–1003CrossRefGoogle Scholar
  21. 21.
    Kay DC, Kroon PA, Cassidy A (2009) The bioactivity of dietary anthocyanins is likely to be mediated by their degradation products. Mol Nutr Food Res 53:S92–S101CrossRefGoogle Scholar
  22. 22.
    Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747Google Scholar
  23. 23.
    Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, Mena P, Del Rio D, Crozier A (2014) Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 88:1803–1853CrossRefGoogle Scholar
  24. 24.
    Kroon PA, Clifford MN, Crozier A, Day AJ, Donovan JL, Manach C, Williamson G (2004) How should we assess the effects of exposure to dietary polyphenols in vitro? Am J Clin Nutr 80:15–21Google Scholar
  25. 25.
    Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker SF, Smith DM, Sporns P (2005) Handbook of analytical chemistry: pigments, colorants, flavor, texture and bioactive food components, vol 2. Wiley, New Jersey, pp 473–475Google Scholar
  26. 26.
    Del Bo’ C, Ciappellano S, Klimi-Zacas D, Martini D, Gardana C, Riso P, Porrini M (2010) Anthocyanins adsorption, metabolism, and distribution from a wild-blueberry-enriched diet (Vaccinium angustifolium) is affected by diet duration in the Sprague-Dawley rat. J Agric Food Chem 58:2494–2497Google Scholar
  27. 27.
    Taverniti V, Fracassetti D, Del Bo’ C, Lanti C, Minuzzo M, Klimis-Zacas D, Riso P, Guglielmetti S (2014) Immunomodulatory effect of a wild blueberry anthocyanin-rich extract in human Caco-2 intestinal cells. J Agric Food Chem 62:8346–8351CrossRefGoogle Scholar
  28. 28.
    Riso P, Brusamolino A, Moro M, Porrini M (2009) Absorption of bioactive compounds from steamed broccoli and their effect on plasma glutathione S-transferase activity. Int J Food Sci Nutr 60(Suppl 1):56–71CrossRefGoogle Scholar
  29. 29.
    Guarnieri S, Riso P, Porrini M (2007) Orange juice vs vitamin C: effect on hydrogen peroxide-induced DNA damage in mononuclear blood cells. Br J Nutr 97:639–643CrossRefGoogle Scholar
  30. 30.
    Simonetti P, Ciappellano S, Gardana C, Bramati L, Pietta P (2002) Procyanidins from Vitis vinifera seeds: in vivo effects on oxidative stress. J Agric Food Chem 50:6217–6221CrossRefGoogle Scholar
  31. 31.
    AOAC Method 991.43 (1995) Total, insoluble and soluble dietary fiber in food-enzymatic-gravimetric method, MES-TRIS buffer. Official methods of analysis, 16th edn. AOAC International, GaithersburgGoogle Scholar
  32. 32.
    Del Bo’ C, Riso P, Brambilla A, Gardana C, Rizzolo A, Simonetti P, Bertolo G, Klimis-Zacas D, Porrini M (2012) Blanching improves anthocyanin absorption from highbush blueberry (Vaccinium corymbosum L.) purée in healthy human volunteers: a pilot study. J Agric Food Chem 60:9298–9304CrossRefGoogle Scholar
  33. 33.
    Cao Y, Roursgaard M, Kermanizadeh A, Loft S, Møller P (2014) Synergistic effects of zinc oxide nanoparticles and fatty acids on toxicity to Caco-2 cells. Int J Toxicol. doi: 10.1177/1091581814560032 Google Scholar
  34. 34.
    Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 26:171–176CrossRefGoogle Scholar
  35. 35.
    Traore K, Trush MA, George M, Spannhake EW, Anderson W, Asseffa A (2005) Signal transduction of phorbol 12-myristate 13-acetate (PMA)-induced growth inhibition of human monocytic leukemia THP-1 cells is reactive oxygen dependent. Leuk Res 29:863–879CrossRefGoogle Scholar
  36. 36.
    Johnson AC, Yabu JM, Hanson S, Shah VO, Zager RA (2003) Experimental glomerulopathy alters renal cortical cholesterol, SRB1, ABCA1, and HMG CoA, reductase expression. Am J Pathol 162:283–291CrossRefGoogle Scholar
  37. 37.
    Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152CrossRefGoogle Scholar
  38. 38.
    Vesterdal LK, Danielsen PH, Folkmann JK, Jespersen LF, Aguilar-Pelaez K, Roursgaard M, Loft S, Møller P (2014) Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles. Toxicol Appl Pharmacol 274:350–360CrossRefGoogle Scholar
  39. 39.
    Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355CrossRefGoogle Scholar
  40. 40.
    Quiňones M, Miguel M, Aleixandre A (2013) Beneficial effects of polyphenols on cardiovascular disease. Pharmacol Res 68:125–131CrossRefGoogle Scholar
  41. 41.
    Wallace TC (2011) Anthocyanins in cardiovascular disease. Adv Nutr 2:1–7CrossRefGoogle Scholar
  42. 42.
    Niculescu LS, Sanda GM, Simionescu N, Sima AV (2014) Bilberries exert an anti-atherosclerotic effect in lipid-loaded macrophages. CEJB 9:268–276Google Scholar
  43. 43.
    Chang JJ, Hsu MJ, Huang HP, Chung DJ, Chang YC, Wang CJ (2013) Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. J Agric Food Chem 61:6069–6076CrossRefGoogle Scholar
  44. 44.
    Hwang YP, Choi JH, Han EH, Kim HG, Wee JH, Jung KO, Jung KH, Kwon KI, Jeong TC, Chung YC, Jeong HG (2011) Purple sweet potato anthocyanins attenuate hepatic lipid accumulation through activating adenosine monophosphate-activated protein kinase in human HepG2 cells and obese mice. Nutr Res 31:896–906CrossRefGoogle Scholar
  45. 45.
    Kim HK, Kim JN, Han SN, Nam JH, Na HN, Ha TJ (2012) Black soybean anthocyanins inhibit adipocyte differentiation in 3T3-L1 cells. Nutr Res 32:770–777CrossRefGoogle Scholar
  46. 46.
    Prior RL, Wu X (2006) Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Rad Res 40:1014–1028CrossRefGoogle Scholar
  47. 47.
    Vendrame S, Daugherty A, Kristo AS, Klimis-Zacas D (2014) Wild blueberry (Vaccinium angustifolium)-enriched diet improves dyslipidaemia and modulates the expression of genes related to lipid metabolism in obese Zucker rats. Br J Nutr 111:194–200CrossRefGoogle Scholar
  48. 48.
    Titta L, Trinei M, Stendardo M, Berniakovich I, Petroni K, Tonelli C, Riso P, Porrini M, Minucci S, Pelicci PG, Rapisarda P, Recupero GR, Giorgio M (2010) Blood orange juice inhibits fat accumulation in mice. Int J Obes (Lond) 34:578–588CrossRefGoogle Scholar
  49. 49.
    Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 48:937–943CrossRefGoogle Scholar
  50. 50.
    Guo H, Guo J, Jiang X, Li Z, Ling W (2012) Cyanidin-3-O-β-glucoside, a typical anthocyanin, exhibits antilipolytic effects in 3T3-L1 adipocytes during hyperglycemia: involvement of FoxO1-mediated transcription of adipose tryglyceride lipase. Food Chem Toxicol 50:3040–3047CrossRefGoogle Scholar
  51. 51.
    Guo H, Liu G, Zhong R, Wang Y, Wang D, Xia M (2012) Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells. Lipids Health Dis 11:10CrossRefGoogle Scholar
  52. 52.
    Tsuda T, Horio F, Uchida K, Aoki H, Osawa T (2003) Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133:2125–2130Google Scholar
  53. 53.
    Speciale A, Chirafisi J, Saija A, Cimino F (2011) Nutritional antioxidants and adaptive cell responses: an update. Curr Mol Med 11:770–789CrossRefGoogle Scholar
  54. 54.
    Chen J, Tao X, Zhang M, Sun A, Zhao L (2014) Properties and stability of blueberry anthocyanin–bovine serum albumin nanoparticles. J Sci Food Agric 94:1781–1786CrossRefGoogle Scholar
  55. 55.
    Cao Y, Roursgaard M, Danielsen PH, Møller P, Loft S (2014) Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production. PLoS ONE 9:e106711CrossRefGoogle Scholar
  56. 56.
    Cao Y, Jacobsen NR, Danielsen PH, Lenz AG, Stoeger T, Loft S, Wallin H, Roursgaard M, Mikkelsen L, Møller P (2014) Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE-/-mice and cultured endothelial cells. Toxicol Sci 138:104–116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Cristian Del Bo’
    • 1
  • Yi Cao
    • 2
  • Martin Roursgaard
    • 2
  • Patrizia Riso
    • 1
  • Marisa Porrini
    • 1
  • Steffen Loft
    • 2
  • Peter Møller
    • 2
  1. 1.Department of Food, Environmental and Nutritional Sciences–Division of Human NutritionUniversità degli Studi di MilanoMilanItaly
  2. 2.Department of Public HealthUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations