European Journal of Nutrition

, Volume 54, Issue 8, pp 1345–1352 | Cite as

Iron bioavailability from commercially available iron supplements

  • Tatiana Christides
  • David Wray
  • Richard McBride
  • Rose Fairweather
  • Paul Sharp
Original Contribution

Abstract

Purpose

Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including three liquid-based supplements.

Methods

Iron bioavailability was measured using Caco-2 cells with ferritin formation as a surrogate marker for iron uptake. Statistical analysis was performed using one-way ANOVA followed by either Dunnett’s or Tukey’s multiple comparisons tests.

Results

Spatone Apple® (a naturally iron-rich mineral water with added ascorbate) and Iron Vital F® (a synthetic liquid iron supplement) had the highest iron bioavailability. There was no statistical difference between iron uptake from ferrous sulphate tablets, Spatone® (naturally iron-rich mineral water alone) and Pregnacare Original® (a multimineral/multivitamin tablet).

Conclusion

In our in vitro model, naturally iron-rich mineral waters and synthetic liquid iron formulations have equivalent or better bioavailability compared with ferrous iron sulphate tablets. If these results are confirmed in vivo, this would mean that at-risk groups of IDA could be offered a greater choice of more bioavailable and potentially better tolerated iron preparations.

Keywords

Iron supplements Anaemia Pregnancy Bariatric surgery Micronutrient deficiency Caco-2 cells 

Supplementary material

394_2014_815_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 36 kb)

References

  1. 1.
    McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B (2009) Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr 12(4):444–454. doi:10.1017/S1368980008002401 CrossRefGoogle Scholar
  2. 2.
    Shankar P, Boylan M, Sriram K (2010) Micronutrient deficiencies after bariatric surgery. Nutrition 26(11–12):1031–1037. doi:10.1016/j.nut.2009.12.003 CrossRefGoogle Scholar
  3. 3.
    Miller JL (2013) Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect. doi:10.1101/cshperspect.a011866 Google Scholar
  4. 4.
    Andrews NC (1999) Disorders of iron metabolism. New Engl J Med 341(26):1986–1995. doi:10.1056/NEJM199912233412607 CrossRefGoogle Scholar
  5. 5.
    Pavord S, Myers B, Robinson S, Allard S, Strong J, Oppenheimer C, British Committee for Standards in H (2012) UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol 156(5):588–600CrossRefGoogle Scholar
  6. 6.
    Zhou SJ, Gibson RA, Crowther CA, Makrides M (2009) Should we lower the dose of iron when treating anaemia in pregnancy? A randomized dose-response trial. Eur J Clin Nutr 63(2):183–190. doi:10.1038/sj.ejcn.1602926 CrossRefGoogle Scholar
  7. 7.
    Hyder SM, Persson LA, Chowdhury AM, Ekstrom EC (2002) Do side-effects reduce compliance to iron supplementation? A study of daily- and weekly-dose regimens in pregnancy. J Health Popul Nutr 20(2):175–179Google Scholar
  8. 8.
    Seck BC, Jackson RT (2008) Determinants of compliance with iron supplementation among pregnant women in Senegal. Public Health Nutr 11(6):596–605. doi:10.1017/S1368980007000924 CrossRefGoogle Scholar
  9. 9.
    Habib F, Alabdin EH, Alenazy M, Nooh R (2009) Compliance to iron supplementation during pregnancy. J Obstet Gynaecol 29(6):487–492. doi:10.1080/01443610902984961 CrossRefGoogle Scholar
  10. 10.
    Keller J, Frederking D, Layer P (2008) The spectrum and treatment of gastrointestinal disorders during pregnancy. Nat Clin Pract Gastr 5(8):430–443. doi:10.1038/ncpgasthep1197 CrossRefGoogle Scholar
  11. 11.
    Bonapace ES Jr, Fisher RS (1998) Constipation and diarrhea in pregnancy. Gastroenterol Clin N 27(1):197–211CrossRefGoogle Scholar
  12. 12.
    Beard JL (2000) Effectiveness and strategies of iron supplementation during pregnancy. Am J Clin Nutr 71(5 Suppl):1288S–1294SGoogle Scholar
  13. 13.
    Ekstrom EC, Kavishe FP, Habicht JP, Frongillo EA Jr, Rasmussen KM, Hemed L (1996) Adherence to iron supplementation during pregnancy in Tanzania: determinants and hematologic consequences. Am J Clin Nutr 64(3):368–374Google Scholar
  14. 14.
    Stoltzfus RJ (2011) Iron interventions for women and children in low-income countries. J Nutr 141(4):756S–762S. doi:10.3945/jn.110.128793 CrossRefGoogle Scholar
  15. 15.
    Worwood M, Evans WD, Villis RJ, Burnett AK (1996) Iron absorption from a natural mineral water (Spatone Iron-Plus). Clin Lab Haematol 18(1):23–27CrossRefGoogle Scholar
  16. 16.
    Halksworth G, Moseley L, Carter K, Worwood M (2003) Iron absorption from Spatone (a natural mineral water) for prevention of iron deficiency in pregnancy. Clin Lab Haematol 25(4):227–231CrossRefGoogle Scholar
  17. 17.
    Zariwala MG, Somavarapu S, Farnaud S, Renshaw D (2013) Comparison study of oral iron preparations using a human intestinal model. Sci Pharm 81(4):1123–1139. doi:10.3797/scipharm.1304-03 CrossRefGoogle Scholar
  18. 18.
    Glahn RP, Lee OA, Yeung A, Goldman MI, Miller DD (1998) Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. J Nutr 128(9):1555–1561Google Scholar
  19. 19.
    Yun S, Habicht JP, Miller DD, Glahn RP (2004) An in vitro digestion/Caco-2 cell culture system accurately predicts the effects of ascorbic acid and polyphenolic compounds on iron bioavailability in humans. J Nutr 134(10):2717–2721Google Scholar
  20. 20.
    Caro IBX, Rousset M, Meunier V, Bourrie M, Julian B, Joyeux H, Roques C, Berger Y, Zweibaum A, Fabre G (1995) Characterisation of a newly isolated Caco-2 clone (TC-7), as a model of transport processes and biotransformation of drugs. Int J Pharm 116:147–158CrossRefGoogle Scholar
  21. 21.
    Sharp P, Tandy S, Yamaji S, Tennant J, Williams M, Singh Srai SK (2002) Rapid regulation of divalent metal transporter (DMT1) protein but not mRNA expression by non-haem iron in human intestinal Caco-2 cells. FEBS Lett 510(1–2):71–76CrossRefGoogle Scholar
  22. 22.
    Christides T, Sharp P (2013) Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells. PLoS One 8(12):e83031. doi:10.1371/journal.pone.0083031 CrossRefGoogle Scholar
  23. 23.
    Glahn RP, Rassier M, Goldman MI, Lee OA, Cha J (2000) A comparison of iron availability from commercial iron preparations using an in vitro digestion/Caco-2 cell culture model. J Nutr Biochem 11(2):62–68CrossRefGoogle Scholar
  24. 24.
    Motulsky H (2010) Intuitive biostatistics, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  25. 25.
    McKenna D, Spence D, Haggan SE, McCrum E, Dornan JC, Lappin TR (2003) A randomized trial investigating an iron-rich natural mineral water as a prophylaxis against iron deficiency in pregnancy. Clin Lab Haematol 25(2):99–103CrossRefGoogle Scholar
  26. 26.
    Teucher B, Olivares M, Cori H (2004) Enhancers of iron absorption: ascorbic acid and other organic acids. Int J Vitam Nutr Res 74(6):403–419CrossRefGoogle Scholar
  27. 27.
    Olivares M, Pizarro F, Ruz M, de Romana DL (2012) Acute inhibition of iron bioavailability by zinc: studies in humans. Biometals 25(4):657–664. doi:10.1007/s10534-012-9524-z CrossRefGoogle Scholar
  28. 28.
    Scholl TO (2005) Iron status during pregnancy: setting the stage for mother and infant. Am J Clin Nutr 81(5):1218S–1222SGoogle Scholar
  29. 29.
    CDC (1998) Recommendations to prevent and control iron deficiency in the United States. MMWR Recomm Rep, vol 47. Centers for Disease Control and PreventionGoogle Scholar
  30. 30.
    WHO (World Health Oreganization) (2012) Guideline: daily iron and folic acid supplementation in pregnant women. Geneva, World Health OrganizationGoogle Scholar
  31. 31.
    WHO (World Health Organization) (2012) Guideline: intermittent iron and folic acid supplementation in non-anaemic pregnant women. Geneva, World Health OrganizationGoogle Scholar
  32. 32.
    NICE (2008) Antenatal care: routine care for the healthy pregnant woman. National Institute for Clinical Excellence, LondonGoogle Scholar
  33. 33.
    Fenton V, Cavill I, Fisher J (1977) Iron stores in pregnancy. Br J Haematol 37(1):145–149CrossRefGoogle Scholar
  34. 34.
    Cuervo LG, Mahomed K (2001) Treatments for iron deficiency anaemia in pregnancy. Cochrane Database Syst Rev. doi:10.1002/14651858.CD003094 Google Scholar
  35. 35.
    Pena-Rosas JP, Viteri FE (2009) Effects and safety of preventive oral iron or iron + folic acid supplementation for women during pregnancy. Cochrane Database Syst Rev. doi:10.1002/14651858.CD004736.pub3 Google Scholar
  36. 36.
    Krafft A (2013) Iron supplementation in pregnancy. Br Med J 347:f4399. doi:10.1136/bmj.f4399 CrossRefGoogle Scholar
  37. 37.
    Pena-Rosas JP, De-Regil LM, Dowswell T, Viteri FE (2012) Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev. doi:10.1002/14651858.CD004736.pub4 Google Scholar
  38. 38.
    Haider BA, Olofin I, Wang M, Spiegelman D, Ezzati M, Fawzi WW, Nutrition Impact Model Study G (2013) Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: systematic review and meta-analysis. Br Med J 346:f3443. doi:10.1136/bmj.f3443 CrossRefGoogle Scholar
  39. 39.
    Jauregui-Lobera I (2013) Iron deficiency and bariatric surgery. Nutrients 5(5):1595–1608. doi:10.3390/nu5051595 CrossRefGoogle Scholar
  40. 40.
    Bal BS, Finelli FC, Shope TR, Koch TR (2012) Nutritional deficiencies after bariatric surgery. Nat Rev Endocrinol 8(9):544–556. doi:10.1038/nrendo.2012.48 CrossRefGoogle Scholar
  41. 41.
    Stein J, Stier C, Raab H, Weiner R (2014) Review article: the nutritional and pharmacological consequences of obesity surgery. Aliment Pharm Ther 40(6):582–609. doi:10.1111/apt.12872 CrossRefGoogle Scholar
  42. 42.
    Sawaya RA, Jaffe J, Friedenberg L, Friedenberg FK (2012) Vitamin, mineral, and drug absorption following bariatric surgery. Curr Drug Metab 13(9):1345–1355CrossRefGoogle Scholar
  43. 43.
    Gasteyger C, Suter M, Gaillard RC, Giusti V (2008) Nutritional deficiencies after Roux-en-Y gastric bypass for morbid obesity often cannot be prevented by standard multivitamin supplementation. Am J Clin Nutr 87(5):1128–1133Google Scholar
  44. 44.
    Gesquiere I, Lannoo M, Augustijns P, Matthys C, Van der Schueren B, Foulon V (2014) Iron deficiency after Roux-en-Y gastric bypass: insufficient iron absorption from oral iron supplements. Obes Surg 24(1):56–61. doi:10.1007/s11695-013-1042-8 CrossRefGoogle Scholar
  45. 45.
    Clements RH, Katasani VG, Palepu R, Leeth RR, Leath TD, Roy BP, Vickers SM (2006) Incidence of vitamin deficiency after laparoscopic Roux-en-Y gastric bypass in a university hospital setting. Am Surg 72(12):1196–1202Google Scholar
  46. 46.
    Netto BD, Moreira EA, Patino JS, Beninca JP, Jordao AA, Frode TS (2012) Influence of Roux-en-Y gastric bypass surgery on vitamin C, myeloperoxidase, and oral clinical manifestations: a 2-year follow-up study. Nutr Clin Pract 27(1):114–121. doi:10.1177/0884533611431462 CrossRefGoogle Scholar
  47. 47.
    Fairweather-Tait S, Lynch S, Hotz C, Hurrell R, Abrahamse L, Beebe S, Bering S, Bukhave K, Glahn R, Hambidge M, Hunt J, Lonnerdal B, Miller D, Mohktar N, Nestel P, Reddy M, Sandber AS, Sharp P, Teucher B, Trinidad TP (2005) The usefulness of in vitro models to predict the bioavailability of iron and zinc: a consensus statement from the HarvestPlus expert consultation. Int J Vitam Nutr Res 75(6):371–374CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tatiana Christides
    • 1
  • David Wray
    • 2
  • Richard McBride
    • 1
  • Rose Fairweather
    • 3
  • Paul Sharp
    • 3
  1. 1.Department of Life and Sports Sciences, Faculty of Engineering and ScienceUniversity of Greenwich, Medway CampusChatham Maritime, KentUK
  2. 2.Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and ScienceUniversity of Greenwich, Medway CampusChatham Maritime, KentUK
  3. 3.Diabetes and Nutritional Sciences Division, Metal Metabolism Group, School of MedicineKing’s College LondonLondonUK

Personalised recommendations