Skip to main content
Log in

Maternal vitamin C deficiency during pregnancy results in transient fetal and placental growth retardation in guinea pigs

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2015

Abstract

Purpose

Recently, we reported that preferential maternal–fetal vitamin C (vitC) transport across the placenta is likely to be impaired by prolonged maternal vitC deficiency. Maintenance of a basal maternal vitC supply at the expense of the fetus may impair fetal development; however, the knowledge of vitC’s impact on intrauterine development is sparse. The aim of this study was to explore the effect of maternal vitC status on fetal and placental development in guinea pigs.

Methods

Twenty pregnant Dunkin Hartley guinea pigs were randomized into four groups to receive diets either sufficient (918 mg/kg CTRL) or deficient (100 mg/kg DEF) in vitC. Cesarean sections at gestational day (GD) 45 or 56 allowed for fetal and placental measurements.

Results

At GD45, body, brain and placental weights were significantly reduced in DEF pups compared with CTRL (p < 0.05, p < 0.001 and p < 0.05, respectively). DEF plasma vitC levels were ~6 % of those of CTRL (p < 0.0001), and the fetal/maternal plasma vitC ratio was significantly reduced at GD56 in the DEF animals compared with controls (p = 0.035). Placental vitC levels were reduced in DEF animals (p < 0.0001) and the ascorbate oxidation ratio and glutathione elevated compared with controls (p < 0.0001).

Conclusions

Although no clinical differences between CTRL and DEF pups were observed at GD56, the present data suggest that vitC plays a role in early fetal development. Although no clinical differences between CTRL and DEF pups were observed at GD56, the present data suggest that vitC plays a role in early fetal development. Low maternal vitC intake during pregnancy may compromise maternal weight gain, placental function and intrauterine development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang YZ, Ren WH, Liao WQ, Zhang GY (2009) Concentrations of antioxidant vitamins in maternal and cord serum and their effect on birth outcomes. J Nutr Sci Vitaminol (Tokyo) 55:1–8

    Article  CAS  Google Scholar 

  2. Dejmek J, Ginter E, Solansky I, Podrazilova K, Stavkova Z, Benes I, Sram RJ (2002) Vitamin C, E and A levels in maternal and fetal blood for Czech and gypsy ethnic groups in the Czech Republic. Int J Vitam Nutr Res 72:183–190

    Article  CAS  Google Scholar 

  3. de Oliveira AM, Rondo PHD, Barros SBD (2004) Concentrations of ascorbic acid in the plasma of pregnant smokers and nonsmokers and their newborns. Int J Vitam Nutr Res 74:193–198

    Article  Google Scholar 

  4. Baydas G, Karatas F, Gursu MF, Bozkurt HA, Ilhan N, Yasar A, Canatan H (2002) Antioxidant vitamin levels in term and preterm infants and their relation to maternal vitamin status. Arch Med Res 33:276–280

    Article  CAS  Google Scholar 

  5. Jain S, Wise R, Yanamandra K, Dhanireddy R, Bocchini J (2008) The effect of maternal and cord-blood vitamin C, vitamin E and lipid peroxide levels on newborn birth weight. Mol Cell Biochem 309:217–221

    Article  CAS  Google Scholar 

  6. Schjoldager JG, Tveden-Nyborg P, Lykkesfeldt J (2013) Prolonged maternal vitamin C deficiency overrides preferential fetal ascorbate transport but does not influence perinatal survival in guinea pigs. Br J Nutr 110:1573–1579

    Article  CAS  Google Scholar 

  7. Harrison FE, Meredith ME, Dawes SM, Saskowski JL, May JM (2010) Low ascorbic acid and increased oxidative stress in gulo(-/-) mice during development. Brain Res 1349:143–152

    Article  CAS  Google Scholar 

  8. Ramirez RJ, Hubel CA, Novak J, DiCianno JR, Kagan VE, Gandley RE (2006) Moderate ascorbate deficiency increases myogenic tone of arteries from pregnant but not virgin ascorbate-dependent rats. Hypertension 47:454–460

    Article  CAS  Google Scholar 

  9. Tveden-Nyborg P, Vogt L, Schjoldager JG, Jeannet N, Hasselholt S, Paidi MD, Christen S, Lykkesfeldt J (2012) Maternal vitamin C deficiency during pregnancy persistently impairs hippocampal neurogenesis in offspring of guinea pigs. PLoS ONE 7:e48488

    Article  CAS  Google Scholar 

  10. Paidi MD, Schjoldager JG, Lykkesfeldt J, Tveden-Nyborg P (2014) Prenatal vitamin C deficiency results in differential levels of oxidative stress during late gestation in foetal guinea pig brains. Redox Biol 2:361–367

    Article  CAS  Google Scholar 

  11. Paidi MD, Schjoldager JG, Lykkesfeldt J, Tveden-Nyborg P (2014) Chronic vitamin C deficiency promotes redox imbalance in the brain but does not alter sodium-dependent vitamin C transporter 2 expression. Nutrients 6:1809–1822

    Article  CAS  Google Scholar 

  12. Jenness R, Birney EC, Ayaz KL, Buzzell DM (1984) Ontogenetic development of L-gulonolactone oxidase activity in several vertebrates. Comp Biochem Physiol B 78:167–173

    Article  CAS  Google Scholar 

  13. Chatterj IB (1973) Evolution and biosynthesis of ascorbic-acid. Science 182:1271–1272

    Article  Google Scholar 

  14. Frei B, Birlouez-Aragon I, Lykkesfeldt J (2012) Authors’ perspective: What is the optimum intake of vitamin C in humans? Crit Rev Food Sci Nutr 52:815–829

    Article  CAS  Google Scholar 

  15. Levine M, Wang YH, Padayatty SJ, Morrow J (2001) A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci USA 98:9842–9846

    Article  CAS  Google Scholar 

  16. Vissers MC, Carr AC, Pullar JM, Bozonet SM (2013) The bioavailability of vitamin C from kiwifruit. Adv Food Nutr Res 68:125–147

    Article  Google Scholar 

  17. Troesch B, Hoeft B, McBurney M, Eggersdorfer M, Weber P (2012) Dietary surveys indicate vitamin intakes below recommendations are common in representative Western countries. Br J Nutr 108:692–698

    Article  CAS  Google Scholar 

  18. Munoz KA, Krebs-Smith SM, Ballard-Barbash R, Cleveland LE (1997) Food intakes of US children and adolescents compared with recommendations. Pediatrics 100:323–329

    Article  CAS  Google Scholar 

  19. Ortega RM, Quintas ME, Andres P, Martinez RM, Lopez-Sobaler AM (1998) Ascorbic acid levels in maternal milk: differences with respect to ascorbic acid status during the third trimester of pregnancy. Br J Nutr 79:431–437

    Article  CAS  Google Scholar 

  20. Johnston CS, Thompson LL (1998) Vitamin C status of an outpatient population. J Am Coll Nutr 17:366–370

    Article  CAS  Google Scholar 

  21. Frikke-Schmidt H, Tveden-Nyborg P, Lykkesfeldt J (2011) Vitamin C in human nutrition. In: Hermann W, Obeid R (eds) Vitamins for prevention of human diseases, 1st edn. Walter de Gruyter GmbH & Co, KG, Berlin, pp 323–347

    Google Scholar 

  22. Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA (1999) A family of mammalian Na+-dependent l-ascorbic acid transporters. Nature 399:70–75

    Article  CAS  Google Scholar 

  23. Lindblad M, Tveden-Nyborg P, Lykkesfeldt J (2013) Regulation of vitamin C homeostasis during deficiency. Nutrients 5:2860–2879

    Article  CAS  Google Scholar 

  24. May JM (2011) The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C. Br J Pharmacol 164:1793–1801

    Article  CAS  Google Scholar 

  25. Sotiriou S, Gispert S, Cheng J, Wang YH, Chen A, Hoogstraten-Miller S, Miller GF, Kwon O, Levine M, Guttentag SH, Nussbaum RL (2002) Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nat Med 8:514–517

    Article  CAS  Google Scholar 

  26. Corpe CP, Tu H, Eck P, Wang J, Faulhaber-Walter R, Schnermann J, Margolis S, Padayatty S, Sun H, Wang Y, Nussbaum RL, Espey MG, Levine M (2010) Vitamin C transporter Slc23a1 links renal reabsorption, vitamin C tissue accumulation, and perinatal survival in mice. J Clin Invest 120:1069–1083

    Article  CAS  Google Scholar 

  27. Chen L, Zhu H, Pan Y, Tang C, Watanabe M, Ruan H, Wang Y, Wang J, Yao HY, Iguchi T, Wu X (2012) Ascorbic acid uptaken by sodium-dependent vitamin C transporter 2 induces betahCG expression through Sp1 and TFAP2A transcription factors in human choriocarcinoma cells. J Clin Endocrinol Metab 97:E1667–E1676

    Article  CAS  Google Scholar 

  28. Mathews F, Yudkin P, Neil A (1999) Influence of maternal nutrition on outcome of pregnancy: prospective cohort study. BMJ 319:339–343

    Article  CAS  Google Scholar 

  29. Lee BE, Hong YC, Lee KH, Kim YJ, Kim WK, Chang NS, Park EA, Park HS, Hann HJ (2004) Influence of maternal serum levels of vitamins C and E during the second trimester on birth weight and length. Eur J Clin Nutr 58:1365–1371

    Article  CAS  Google Scholar 

  30. Siega-Riz AM, Promislow JHE, Savitz DA, Thorp JM, McDonald T (2003) Vitamin C intake and the risk of preterm delivery. Am J Obstet Gynecol 189:519–525

    Article  CAS  Google Scholar 

  31. Hovdenak N, Haram K (2012) Influence of mineral and vitamin supplements on pregnancy outcome. Eur J Obstet Gynecol Reprod Biol 164:127–132

    Article  CAS  Google Scholar 

  32. An Conde-Agudelo, Romero R, Kusanovic JP, Hassan SS (2011) Supplementation with vitamins C and E during pregnancy for the prevention of preeclampsia and other adverse maternal and perinatal outcomes: a systematic review and metaanalysis. Am J Obstet Gynecol 204:503–561

    Google Scholar 

  33. Salles AMR, Galvao TF, Silva MT, Motta LCD, Pereira MG (2012) Antioxidants for preventing preeclampsia: a systematic review. SciWorldJ 2012:1–10

    Google Scholar 

  34. Lykkesfeldt J, Trueba GP, Poulsen HE, Christen S (2007) Vitamin C deficiency in weanling guinea pigs: differential expression of oxidative stress and DNA repair in liver and brain. Br J Nutr 98:1116–1119

    Article  CAS  Google Scholar 

  35. Tveden-Nyborg P, Hasselholt S, Miyashita N, Moos T, Poulsen HE, Lykkesfeldt J (2012) Chronic vitamin C deficiency does not accelerate oxidative stress in ageing brains of guinea pigs. Basic Clin Pharmacol Toxicol 110:524–529

    Article  CAS  Google Scholar 

  36. Tveden-Nyborg P, Johansen LK, Raida Z, Villumsen CK, Larsen JO, Lykkesfeldt J (2009) Vitamin C deficiency in early postnatal life impairs spatial memory and reduces the number of hippocampal neurons in guinea pigs. Am J Clin Nutr 90:540–546

    Article  CAS  Google Scholar 

  37. Tveden-Nyborg P, Lykkesfeldt J (2013) Does vitamin C deficiency increase lifestyle-associated vascular disease progression? Evidence based on experimental and clinical studies. Antioxid Redox Signal 19(17):2084–2104

    Article  CAS  Google Scholar 

  38. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83

    Article  CAS  Google Scholar 

  39. Rehn AE, Van den Buuse M, Copolov D, Briscoe T, Lambert G, Rees S (2004) An animal model of chronic placental insufficiency: relevance to neurodevelopmental disorders including schizophrenia. Neuroscience 129:381–391

    Article  CAS  Google Scholar 

  40. Enders AC (1965) A comparative study of fine structure of trophoblast in several hemochorial placentas. Am J Anat 116:29

    Article  CAS  Google Scholar 

  41. Carter AM (2007) Animal models of human placentation—a review. Placenta 28:S41–S47

    Article  Google Scholar 

  42. Draper RL (1920) The prenatal growth of the guinea-pig. Anat Rec 18:369–392

    Article  Google Scholar 

  43. Goy RW, Hoar RM, Young WC (1957) Length of gestation in the guinea pig with data on the frequency and time of abortion and stillbirth. Anat Rec 128:747–757

    Article  CAS  Google Scholar 

  44. Lykkesfeldt J (2012) Ascorbate and dehydroascorbic acid as biomarkers of oxidative stress: validity of clinical data depends on vacutainer system used. Nutr Res 32:66–69

    Article  CAS  Google Scholar 

  45. Lykkesfeldt J (2000) Determination of ascorbic acid and dehydroascorbic acid in biological samples by high-performance liquid chromatography using subtraction methods: reliable reduction with tris[2-carboxyethyl] phosphine hydrochloride. Anal Biochem 282:89–93

    Article  CAS  Google Scholar 

  46. Lykkesfeldt J (2007) Ascorbate and dehydroascorbic acid as reliable biomarkers of oxidative stress: analytical reproducibility and long-term stability of plasma samples subjected to acidic deproteinization. Cancer Epidemiol Biomark Prev 16:2513–2516

    Article  CAS  Google Scholar 

  47. Lykkesfeldt J, Loft S, Nielsen JB, Poulsen HE (1997) Ascorbic acid and dehydroascorbic acid as biomarkers of oxidative stress caused by smoking. Am J Clin Nutr 65:959–963

    CAS  Google Scholar 

  48. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  Google Scholar 

  49. Clark AG, Rohrbaugh AL, Otterness I, Kraus VB (2002) The effects of ascorbic acid on cartilage metabolism in guinea pig articular cartilage explants. Matrix Biol 21:175–184

    Article  CAS  Google Scholar 

  50. von Beckerath AK, Kollmann M, Rotky-Fast C, Karpf E, Lang U, Klaritsch P (2013) Perinatal complications and long-term neurodevelopmental outcome of infants with intrauterine growth restriction. Am J Obstet Gynecol 208:130.e1–6

    Article  Google Scholar 

  51. Pedersen NG, Wojdemann KR, Scheike T, Tabor A (2008) Fetal growth between the first and second trimesters and the risk of adverse pregnancy outcome. Ultrasound Obstet Gynecol 32:147–154

    Article  CAS  Google Scholar 

  52. Kady SM, Gardosi J (2004) Perinatal mortality and fetal growth restriction. Best Pract Res Clin Obstet Gynaecol 18:397–410

    Article  Google Scholar 

  53. Damodaram M, Story L, Kulinskaya E, Rutherford M, Kumar S (2011) Early adverse perinatal complications in preterm growth-restricted fetuses. Aust N Z J Obstet Gynaecol 51:204–209

    Article  Google Scholar 

  54. Tideman E, Marsal K, Ley D (2007) Cognitive function in young adults following intrauterine growth restriction with abnormal fetal aortic blood flow. Ultrasound Obstet Gynecol 29:614–618

    Article  CAS  Google Scholar 

  55. Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601

    Article  CAS  Google Scholar 

  56. Godfrey KM, Barker DJP, Robinson S, Osmond C (1997) Maternal birthweight and diet in pregnancy in relation to the infant’s thinness at birth. Br J Obstet Gynaecol 104:663–667

    Article  CAS  Google Scholar 

  57. Garite TJ, Clark RH, Elliott JP, Thorp JA (2004) Twins and triplets: the effect of plurality and growth on neonatal outcome compared with singleton infants. Am J Obstet Gynecol 191:700–707

    Article  Google Scholar 

  58. Mathews F, Youngman L, Neil A (2004) Maternal circulating nutrient concentrations in pregnancy: implications for birth and placental weights of term infants. Am J Clin Nutr 79:103–110

    CAS  Google Scholar 

  59. Darlow BA, Buss H, McGill F, Fletcher L, Graham P, Winterbourn CC (2005) Vitamin C supplementation in very preterm infants: a randomised controlled trial. Arch Dis Child 90:F117–F122

    Article  CAS  Google Scholar 

  60. Rivers JM, Krook L, Cormier A (1970) Biochemical and histological study of guinea pig fetal and uterine tissue in ascorbic acid deficiency. J Nutr 100:217–227

    CAS  Google Scholar 

  61. Tannetta DS, Sargent IL, Linton EA, Redman CW (2008) Vitamins C and E inhibit apoptosis of cultured human term placenta trophoblast. Placenta 29:680–690

    Article  CAS  Google Scholar 

  62. Franceschi RT (1992) The role of ascorbic-acid in mesenchymal differentiation. Nutr Rev 50:65–70

    Article  CAS  Google Scholar 

  63. Barnett SA, Bourne G (1941) The distribution of ascorbic acid (vitamin C) in the early stages of the developing chick embryo. J Anat 75:251–264

    CAS  Google Scholar 

  64. Pate SK, Lukert BP, Kipp DE (1996) Tissue vitamin C levels of guinea pig offspring are influenced by maternal vitamin C intake during pregnancy. J Nutr Biochem 7:524–528

    Article  CAS  Google Scholar 

  65. Rajan DP, Huang W, Dutta B, Devoe LD, Leibach FH, Ganapathy V, Prasad PD (1999) Human placental sodium-dependent vitamin C transporter (SVCT2): molecular cloning and transport function. Biochem Biophys Res Commun 262:762–768

    Article  CAS  Google Scholar 

  66. Biondi C, Pavan B, Dalpiaz A, Medici S, Lunghi L, Vesce F (2007) Expression and characterization of vitamin C transporter in the human trophoblast cell line HTR-8/SVneo: effect of steroids, flavonoids and NSAIDs. Mol Hum Reprod 13:77–83

    Article  CAS  Google Scholar 

  67. Das S, Powers HJ (1998) The effects of maternal intake and gestational age on materno-fetal transport of vitamin C in the guinea-pig. Br J Nutr 80:485–491

    CAS  Google Scholar 

  68. Zalani S, Rajalakshmi R, Parekh LJ (1989) Ascorbic-acid concentration of human-fetal tissues in relation to fetal size and gestational-age. Br J Nutr 61:601–606

    Article  CAS  Google Scholar 

  69. Lund CJ, Kimble MS (1943) Some determinants of maternal and plasma vitamin C levels. Am J Obstet Gynecol 46:635–647

    CAS  Google Scholar 

  70. Osaikhuwuomwan JA, Okpere EE, Okonkwo CA, Ande AB, Idogun ES (2011) Plasma vitamin C levels and risk of preterm prelabour rupture of membranes. Arch Gynecol Obstet 284:593–597

    Article  CAS  Google Scholar 

  71. Negi R, Pande D, Kumar A, Khanna RS, Khanna HD (2012) Evaluation of biomarkers of oxidative stress and antioxidant capacity in the cord blood of preterm low birth weight neonates. J Matern Fetal Neonatal Med 25:1338–1341

    Article  CAS  Google Scholar 

  72. Jauniaux E, Poston L, Burton GJ (2006) Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution. Hum Reprod Update 12:747–755

    Article  CAS  Google Scholar 

  73. Lykkesfeldt J, Poulsen HE (2010) Is vitamin C supplementation beneficial? Lessons learned from randomised controlled trials. Br J Nutr 103:1251–1259

    Article  CAS  Google Scholar 

  74. Wu X, Iguchi T, Itoh N, Okamoto K, Takagi T, Tanaka K, Nakanishi T (2008) Ascorbic acid transported by sodium-dependent vitamin C transporter 2 stimulates steroidogenesis in human choriocarcinoma cells. Endocrinology 149:73–83

    Article  CAS  Google Scholar 

  75. Sanderson JT (2009) Placental and fetal steroidogenesis. Methods Mol Biol 550:127–136

    Article  CAS  Google Scholar 

  76. Pinnell SR (1985) Regulation of collagen biosynthesis by ascorbic acid: a review. Yale J Biol Med 58:553

    CAS  Google Scholar 

  77. Poschl E, Schlotzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U (2004) Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131:1619–1628

    Article  Google Scholar 

  78. Flashman E, Davies SL, Yeoh KK, Schofield CJ (2010) Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and prolyl hydroxylase domain 2) on ascorbate and other reducing agents. Biochem J 427:135–142

    Article  CAS  Google Scholar 

  79. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  CAS  Google Scholar 

  80. Wegger I, Palludan B (1994) Vitamin-c-deficiency causes hematological and skeletal abnormalities during fetal development in swine. J Nutr 124:241–248

    CAS  Google Scholar 

  81. Kishimoto Y, Kanai T, Sato K, Lee J, Jeong KS, Shimokado K, Maruyama N, Ishigami A (2013) Insufficient ascorbic acid intake during gestation induces abnormal cardiac dilation in fetal and neonatal SMP30/GNL knockout mice. Pediatr Res 73:578–584

    Article  CAS  Google Scholar 

  82. Harrison FE, Dawes SM, Meredith ME, Babaev VR, Li L, May JM (2010) Low vitamin C and increased oxidative stress and cell death in mice that lack the sodium-dependent vitamin C transporter SVCT2. Free Radic Biol Med 49:821–829

    Article  CAS  Google Scholar 

  83. Dobbing J, Sands J (1973) Quantitative Growth and Development of Human Brain. Arch Dis Child 48:757–767

    Article  CAS  Google Scholar 

  84. Ikonomidou C, Kaindl AM (2011) Neuronal death and oxidative stress in the developing brain. Antioxid Redox Signal 14:1535–1550

    Article  CAS  Google Scholar 

  85. Teel HM, Burke BS, Draper R (1938) Vitamin C in human pregnancy and lactation I Studies during pregnancy. Am J Dis Child 56:1004–1010

    Article  CAS  Google Scholar 

  86. Norkus EP, Bassi J, Rosso P (1979) Maternal–fetal transfer of ascorbic-acid in the guinea-pig. J Nutr 109:2205–2212

    CAS  Google Scholar 

Download references

Acknowledgments

Annie B. Kristensen, Elisabeth V. Andersen and Joan Frandsen are thanked for excellent assistance. Christian Ritz is thanked for helpful comments about the statistical analysis. This study was supported by the Danish Research Councils and the LifePharm Centre for in vivo pharmacology.

Conflict of interest

All authors declare no conflicts of interest that could influence the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Lykkesfeldt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schjoldager, J.G., Paidi, M.D., Lindblad, M.M. et al. Maternal vitamin C deficiency during pregnancy results in transient fetal and placental growth retardation in guinea pigs. Eur J Nutr 54, 667–676 (2015). https://doi.org/10.1007/s00394-014-0809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0809-6

Keywords

Navigation