Advertisement

European Journal of Nutrition

, Volume 54, Issue 8, pp 1255–1267 | Cite as

Apigenin manipulates the ubiquitin–proteasome system to rescue estrogen receptor-β from degradation and induce apoptosis in prostate cancer cells

  • Vishal Singh
  • Vikas Sharma
  • Vikas Verma
  • Deepti Pandey
  • Santosh K. Yadav
  • Jagdamba P. Maikhuri
  • Gopal GuptaEmail author
Original Contribution

Abstract

Purpose

To investigate apigenin (5,7,4-trihydroxyflavone), a dietary flavonoid with proteasome-inhibitory activity (desired for the management of multiple types of cancers), against FDA-approved anticancer proteasome inhibitor bortezomib in context to its effects on the tumor suppressor estrogen receptor-beta (ER-β) in prostate cancer cells.

Methods

Prostate cancer (PC-3) cells were treated with either apigenin or bortezomib, and proliferation inhibition was correlated with proteasomal biochemistry, ER-degradation and cell apoptosis.

Results

Apigenin specifically inhibited only chymotrypsin-like activity of proteasome without affecting trypsin and caspase-like activities, which was in contrast to the non-specific inhibition of all the three activities by bortezomib. Apigenin selectively increased the protein levels of ER-β at 1.8 and 10.0 µM (without affecting mRNA levels) and preferentially accumulated ubiquitinated ER-β over ER-α in PC-3. Apigenin-treated cells exhibited increased ER-β interactions with ubiquitin-protein ligase E6AP, downregulated PSMA5 (α-5 subunit for assembly of 20S proteasome) without affecting PSMB1 (β-1 subunit), PSMB2 (β-2 subunit) and PSMB5 (β-5 subunit, whose overexpression by bortezomib causes drug resistance) of proteasome at mRNA levels. Caspase-3 activation in PC-3 by apigenin was dependent on caspase-8 activity but independent of mitochondrial membrane depolarization. The deubiquitinase USP14 activity, which antagonizes degradation of proteins via proteasome, was significantly increased by apigenin treatment.

Conclusions

Apigenin selectively inhibits proteasomal degradation of tumor suppressor ER-β by specifically inhibiting chymotrypsin-like activity of proteasome, preventing its assembly via PSMA5 and inhibiting USP14 enzyme activity in prostate cancer cells, resulting in cancer cell apoptosis. Unlike bortezomib, apigenin’s actions are subtle, precise, mechanistically distinct and capable of abstaining drug resistance.

Keywords

Apigenin Proteasome Ubiquitination Estrogen receptor-beta Bortezomib Prostate cancer 

Notes

Acknowledgments

This study was supported by a grant from the Ministry of Health and Family Welfare, Government of India (GAP0001). [CDRI communication number 8844]

Conflict of interest

None.

Supplementary material

394_2014_803_MOESM1_ESM.docx (903 kb)
Supplementary material 1 (DOCX 903 kb)

References

  1. 1.
    Globocan (2008) Cancer incidence and mortality worldwide. http://www.iarc.fr/en/media-centre/iarcnews/2010/globocan2008.php. Accessed 16 Nov 2014
  2. 2.
    Papandreou CN, Logothetis CJ (2004) Bortezomib as a potential treatment for prostate cancer. Cancer Res 64:5036–5043CrossRefGoogle Scholar
  3. 3.
    Chen L, Madura K (2005) Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res 65:5599–5606CrossRefGoogle Scholar
  4. 4.
    Voutsadakis IA, Papandreou CN (2012) The ubiquitin–proteasome system in prostate cancer and its transition to castration resistance. Urol Oncol 30:752–761CrossRefGoogle Scholar
  5. 5.
    Zhang L, Littlejohn JE, Cui Y, Cao X, Peddaboina C, Smythe WR (2010) Characterization of bortezomib-adapted I-45 mesothelioma cells. Mol Cancer 9:110CrossRefGoogle Scholar
  6. 6.
    Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397–403CrossRefGoogle Scholar
  7. 7.
    Poulaki V, Mitsiades CS, Kotoula V, Negri J, McMillin D, Miller JW, Mitsiades N (2007) The proteasome inhibitor bortezomib induces apoptosis in human retinoblastoma cell lines in vitro. Invest Ophthalmol Vis Sci 48:4706–4719CrossRefGoogle Scholar
  8. 8.
    Kane RC, Farrell AT, Sridhara R, Pazdur R (2006) United States food and drug administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res 12:2955–2960CrossRefGoogle Scholar
  9. 9.
    Parlati F, Lee SJ, Aujay M, Suzuki E, Levitsky K, Lorens JB, Micklem DR, Ruurs P, Sylvain C, Lu Y, Shenk KD, Bennett MK (2009) Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood 114:3439–3447CrossRefGoogle Scholar
  10. 10.
    Neilsen PM, Pehere AD, Pishas KI, Callen DF, Abell AD (2013) New 26S proteasome inhibitors with high selectivity for chymotrypsin-like activity and p53-dependent cytotoxicity. ACS Chem Biol 8:353–359CrossRefGoogle Scholar
  11. 11.
    Lu S, Chen Z, Yang J, Chen L, Gong S, Zhou H, Guo L, Wang J (2008) Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Exp Hematol 36:1278–1284CrossRefGoogle Scholar
  12. 12.
    Chen D, Daniel KG, Chen MS, Kuhn DJ, Landis-Piwowar KR, Dou QP (2005) Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol 69:1421–1432CrossRefGoogle Scholar
  13. 13.
    Way TD, Kao MC, Lin JK (2004) Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 279:4479–4489CrossRefGoogle Scholar
  14. 14.
    He J, Xu Q, Wang M, Li C, Qian X, Shi Z, Liu LZ, Jiang BH (2012) Oral administration of apigenin inhibits metastasis through AKT/P70S6K1/MMP-9 Pathway in orthotopic ovarian tumor model. Int J Mol Sci 13:7271–7282CrossRefGoogle Scholar
  15. 15.
    Horvath LG, Henshall SM, Lee CS, Head DR, Quinn DI, Makela S, Delprado W, Golovsky D, Brenner PC, O’Neill G, Kooner R, Stricker PD, Grygiel JJ, Gustafsson JA, Sutherland RL (2001) Frequent loss of estrogen receptor-beta expression in prostate cancer. Cancer Res 61:5331–5335Google Scholar
  16. 16.
    Ellem SJ, Risbridger GP (2009) The dual, opposing roles of estrogen in the prostate. Ann NY Acad Sci 1155:174–186CrossRefGoogle Scholar
  17. 17.
    Li B, Hu Q, Xu R, Ren H, Fei E, Chen D, Wang G (2012) Hax-1 is rapidly degraded by the proteasome dependent on its PEST sequence. BMC Cell Biol 13:20CrossRefGoogle Scholar
  18. 18.
    Harlow E, Lane D (2006) Bradford assay. CSH Protoc. doi: 10.1101/pdb.prot4644
  19. 19.
    Harrington HA, Ho KL, Ghosh S, Tung KC (2008) Construction and analysis of a modular model of caspase activation in apoptosis. Theor Biol Med Model 5:26CrossRefGoogle Scholar
  20. 20.
    Kisselev AF, Garcia-Calvo M, Overkleeft HS, Peterson E, Pennington MW, Ploegh HL, Thornberry NA, Goldberg AL (2003) The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J Biol Chem 278:35869–35877CrossRefGoogle Scholar
  21. 21.
    Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 96:10403–10408CrossRefGoogle Scholar
  22. 22.
    Dey P, Strom A, Gustafsson JA (2014) Estrogen receptor beta upregulates FOXO3a and causes induction of apoptosis through PUMA in prostate cancer. Oncogene 33:4213–4225CrossRefGoogle Scholar
  23. 23.
    Lau KM, LaSpina M, Long J, Ho SM (2000) Expression of estrogen receptor (ER)-alpha and ER-beta in normal and malignant prostatic epithelial cells: regulation by methylation and involvement in growth regulation. Cancer Res 60:3175–3182Google Scholar
  24. 24.
    Picard N, Charbonneau C, Sanchez M, Licznar A, Busson M, Lazennec G, Tremblay A (2008) Phosphorylation of activation function-1 regulates proteasome-dependent nuclear mobility and E6-associated protein ubiquitin ligase recruitment to the estrogen receptor beta. Mol Endocrinol 22:317–330CrossRefGoogle Scholar
  25. 25.
    Berry NB, Fan M, Nephew KP (2008) Estrogen receptor-alpha hinge-region lysines 302 and 303 regulate receptor degradation by the proteasome. Mol Endocrinol 22:1535–1551CrossRefGoogle Scholar
  26. 26.
    Eakin CM, Maccoss MJ, Finney GL, Klevit RE (2007) Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proc Natl Acad Sci USA 104:5794–5799CrossRefGoogle Scholar
  27. 27.
    Stanisic V, Malovannaya A, Qin J, Lonard DM, O’Malley BW (2009) OTU Domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) deubiquitinates estrogen receptor (ER) alpha and affects ER alpha transcriptional activity. J Biol Chem 284:16135–16145CrossRefGoogle Scholar
  28. 28.
    Tateishi Y, Sonoo R, Sekiya Y, Sunahara N, Kawano M, Wayama M, Hirota R, Kawabe Y, Murayama A, Kato S, Kimura K, Yanagisawa J (2006) Turning off estrogen receptor beta-mediated transcription requires estrogen-dependent receptor proteolysis. Mol Cell Biol 26:7966–7976CrossRefGoogle Scholar
  29. 29.
    Matthews J, Gustafsson JA (2003) Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv 3:281–292CrossRefGoogle Scholar
  30. 30.
    Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir JM, Corbo L (2011) Cracking the estrogen receptor’s posttranslational code in breast tumors. Endocr Rev 32:597–622CrossRefGoogle Scholar
  31. 31.
    Hirano Y, Hendil KB, Yashiroda H, Iemura S, Nagane R, Hioki Y et al (2005) A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437:1381–1385CrossRefGoogle Scholar
  32. 32.
    Arlt A, Bauer I, Schafmayer C, Tepel J, Muerkoster SS, Brosch M, Roder C, Kalthoff H, Hampe J, Moyer MP, Folsch UR, Schafer H (2009) Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene 28:3983–3996CrossRefGoogle Scholar
  33. 33.
    Sacco JJ, Coulson JM, Clague MJ, Urbe S (2010) Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 62:140–157Google Scholar
  34. 34.
    Song L, Rape M (2008) Reverse the curse—the role of deubiquitination in cell cycle control. Curr Opin Cell Biol 20:156–163CrossRefGoogle Scholar
  35. 35.
    D’Arcy P, Linder S (2012) Proteasome deubiquitinases as novel targets for cancer therapy. Int J Biochem Cell Biol 44:1729–1738CrossRefGoogle Scholar
  36. 36.
    Lee MJ, Lee BH, Hanna J, King RW, Finley D (2011) Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics 10:R110 003871CrossRefGoogle Scholar
  37. 37.
    Kumar R, Verma V, Jain A, Jain RK, Maikhuri JP, Gupta G (2011) Synergistic chemoprotective mechanisms of dietary phytoestrogens in a select combination against prostate cancer. J Nutr Biochem 22:723–731CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Vishal Singh
    • 1
  • Vikas Sharma
    • 1
  • Vikas Verma
    • 1
  • Deepti Pandey
    • 1
  • Santosh K. Yadav
    • 1
  • Jagdamba P. Maikhuri
    • 1
  • Gopal Gupta
    • 1
    Email author
  1. 1.Division of EndocrinologyCSIR-Central Drug Research InstituteLucknowIndia

Personalised recommendations