Skip to main content

Advertisement

Log in

Protective effect of thymoquinone against high-fructose diet-induced metabolic syndrome in rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Thymoquinone (TQ), a bioactive constituent of Nigella sativa (Linn.) seed, which is commonly used as a spice in Asian food, has been reported to possess a wide range of biological effects. The present study evaluated the effect of TQ on high-fructose diet (HFD)-induced metabolic syndrome (MetS) in male Wistar rats.

Methods

MetS was induced by 60 % HFD over 42 days. TQ (25, 50 and 100 mg/kg, p.o. once daily) was administered along with HFD for 42 days. Pioglitazone (10 mg/kg, p.o. once daily) was used as a standard drug. Plasma glucose, triglycerides, total cholesterol and HDL-cholesterol were estimated on days 0 and 42. Change in blood pressure, oral glucose tolerance and insulin resistance were measured. Hepatic thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase levels were estimated as measures of hepatic oxidative stress. Hepatic mRNA of PPAR-α and PPAR-γ was also studied.

Results

TQ prevented the characteristic features of HFD-induced MetS, such as hyperglycaemia, hypertriglyceridemia, hypercholesterolaemia and elevated systolic blood pressure. TQ also prevented impaired glucose tolerance and insulin resistance. It also ameliorated HFD-induced increase in hepatic TBARS and depletion of SOD, catalase and GSH. TQ prevented reduction in hepatic mRNA of PPAR-α and PPAR-γ in HFD rats, and the effects were comparable to those of pioglitazone.

Conclusions

This study demonstrates protective effect of TQ against HFD-induced MetS on rats which might have been mediated via PPAR mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tran LT, Yuen VG, McNeill JH (2009) The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem 332(1–2):145–159

    Article  CAS  Google Scholar 

  2. Aydin S, Aksoy A, Aydin S, Kalayci M, Yilmaz M, Kuloglu T, Citil C, Catak Z (2014) Today’s and yesterday’s of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition 30(1):1–9

    Article  CAS  Google Scholar 

  3. Shahbazian H, Latifi SM, Jalali MT, Shahbazian H, Amani R, Nikhoo A, Aleali AM (2013) Metabolic syndrome and its correlated factors in an urban population in South West of Iran. J Diabetes Metab Disord 12(1):11

    Article  Google Scholar 

  4. Khitan Z, Kim DH (2013) Fructose: a key factor in the development of metabolic syndrome and hypertension. J Nutr Metab 2013:682673

    Article  Google Scholar 

  5. Abdulla MH, Sattar MA, Johns EJ (2011) The relation between fructose-induced metabolic syndrome and altered renal haemodynamic and excretory function in the rat. Int J Nephrol 2011:934659

    Google Scholar 

  6. Fievet C, Fruchart JC, Staels B (2006) PPAR alpha and PPAR gamma dual agonists for the treatment of type 2 diabetes and the metabolic syndrome. Curr Opin Pharmacol 6(6):606–614

    Article  CAS  Google Scholar 

  7. Wang YX (2010) PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res 20(2):124–137

    Article  CAS  Google Scholar 

  8. Nagai Y, Nishio Y, Nakamura T, Maegawa H, Kikkawa R, Kashiwagi A (2002) Amelioration of high fructose-induced metabolic derangements by activation of PPAR alpha. Am J Physiol Endocrinol Metab 282(5):E1180–E1190

    Article  CAS  Google Scholar 

  9. Tenenbaum A, Fisman EZ, Motro M (2003) Metabolic syndrome and type 2 diabetes mellitus: focus on peroxisome proliferator activated receptors (PPAR). Cardiovasc Diabetol 2(1):4

    Article  Google Scholar 

  10. Vosper H, Khoudoli GA, Graham TL, Palmer CNA (2002) Peroxisome proliferator–activated receptor agonists, hyperlipidemia, and atherosclerosis. Pharmacol Ther 95(1):47–62

    Article  CAS  Google Scholar 

  11. Tjokroprawiro A (2006) New approach in the treatment of T2DM and metabolic syndrome (focus on a novel insulin sensitizer). Acta Med Indones 38(3):160–166

    Google Scholar 

  12. Chaieb K, Kouidhi B, Jrah H, Mahdouani K, Bakhrouf A (2011) Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement Altern Med 11:29

    Article  CAS  Google Scholar 

  13. Ibrahim RM, Hamdan NS, Mahmud R, Imam MU, Saini SM, Rashid SN, Abd Ghafar SA, Latiff LA, Ismail M (2014) A randomised controlled trial on hypolipidemic effects of Nigella sativa seeds powder in menopausal women. J Transl Med 12:82

  14. Nagi MN, Alam K, Badary OA, al-Shabanah OA, al-Sawaf HA, al-Bekairi AM (1999) Thymoquinone protects against carbon tetrachloride hepatotoxicity in mice via an antioxidant mechanism. Biochem Mol Biol Int 47(1):153–159

    CAS  Google Scholar 

  15. Woo CC, Loo SY, Gee V, Yap CW, Sethi G, Kumar AP, Tan KH (2011) Anticancer activity of thymoquinone in breast cancer cells: possible involvement of PPAR-γ pathway. Biochem Pharmacol 82(5):464–475

    Article  CAS  Google Scholar 

  16. Fararh KM, Shimizu Y, Shiina T, Nikami H, Ghanem MM, Takewaki T (2005) Thymoquinone reduces hepatic glucose production in diabetic hamsters. Res Vet Sci 79(3):219–223

    Article  CAS  Google Scholar 

  17. Randhawa MA, Alghamdi MS, Maulik SK (2013) The effect of thymoquinone, an active component of Nigella sativa, on isoproterenol induced myocardial injury. Pak J Pharm Sci 26(6):1215–1219

    CAS  Google Scholar 

  18. Woo CC, Kumar AP, Sethi G, Tan KH (2012) Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol 83(4):443–451

    Article  CAS  Google Scholar 

  19. Kim HY, Okubo T, Juneja LR, Yokozawa T (2010) The protective role of amla (Emblica officinalis Gaertn.) against fructose-induced metabolic syndrome in a rat model. Br J Nutr 103(4):502–512

    Article  CAS  Google Scholar 

  20. Collino M, Aragno M, Castiglia S, Miglio G, Tomasinelli C, Boccuzzi G, Thiemermann C, Fantozzi R (2010) Pioglitazone improves lipid and insulin levels in overweight rats on a high cholesterol and fructose diet by decreasing hepatic inflammation. Br J Pharmacol 160(8):1892–1902

    Article  CAS  Google Scholar 

  21. Lehnen AM, Leguisamo NM, Pinto GH, Markoski MM, De Angelis K, Machado UF, Schaan B (2010) The beneficial effects of exercise in rodents are preserved after detraining: a phenomenon unrelated to GLUT4 expression. Cardiovasc Diabetol 9:67

    Article  Google Scholar 

  22. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  Google Scholar 

  23. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  Google Scholar 

  24. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21(2):130–132

    CAS  Google Scholar 

  25. Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods of Enzymatic Analysis. Chemic Academic Press Inc., Verlag, pp 673–685

    Chapter  Google Scholar 

  26. Maulik SK, Prabhakar P, Dinda AK, Seth S (2012) Genistein prevents isoproterenol-induced cardiac hypertrophy in rats. Can J Physiol Pharmacol 90(8):1117–1125

    Article  CAS  Google Scholar 

  27. Moran-Salvador E, Lopez-Parra M, Garcia-Alonso V, Titos E, Martínez-Clemente M, Gonzalez-Periz A, Lopez-Vicario C, Barak Y, Arroyo V, Claria J (2011) Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte-and macrophage-specific conditional knockouts. FASEB J 25(8):2538–2550

    Article  CAS  Google Scholar 

  28. Gao H, Guan T, Li C, Zuo G, Yamahara J, Wang J, Li Y (2012) Treatment with ginger ameliorates fructose-induced Fatty liver and hypertriglyceridemia in rats: modulation of the hepatic carbohydrate response element-binding protein-mediated pathway. Evid Based Complement Altern Med 2012:570948

    Google Scholar 

  29. Ibrahim MA, Amin EF, Ibrahim SA, Abdelzaher WY, Abdelrahman AM (2014) Montelukast and irbesartan ameliorate metabolic and hepatic disorders in fructose-induced metabolic syndrome in rats. Eur J Pharmacol 724:204–210

    Article  CAS  Google Scholar 

  30. Panchal SK, Poudyal H, Brown L (2012) Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. J Nutr 142(6):1026–1032

    Article  CAS  Google Scholar 

  31. Monsalve FA, Pyarasani RD, Delgado-Lopez F, Moore-Carrasco R (2013) Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediat Inflamm 2013:549627

    Article  Google Scholar 

  32. Huang J, Jia Y, Fu T, Viswakarma N, Bai L, Rao MS, Zhu Y, Borensztajn J, Reddy JK (2012) Sustained activation of PPARα by endogenous ligands increases hepatic fatty acid oxidation and prevents obesity in ob/ob mice. FASEB J 26(2):628–638

    Article  CAS  Google Scholar 

  33. Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA, Anwar F, Kishore K (2013) A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac J Trop Biomed 3(5):337–352

    Article  Google Scholar 

  34. Badary OA, Abdel-Naim AB, Abdel-Wahab MH, Hamada FM (2000) The influence of thymoquinone on doxorubicin-induced hyperlipidemic nephropathy in rats. Toxicology 143(3):219–226

    Article  CAS  Google Scholar 

  35. Ragheb A, Elbarbry F, Prasad K, Mohamed A, Ahmed MS, Shoker A (2008) Attenuation of the development of hypercholesterolemic atherosclerosis by thymoquinone. Int J Angiol 17(4):186–192

    Article  Google Scholar 

  36. Suzuki M, Nomura C, Odaka H, Ikeda H (1997) Effect of an insulin sensitizer, pioglitazone, on hypertension in fructose-drinking rats. Jpn J Pharmacol 74(4):297–302

    Article  CAS  Google Scholar 

  37. Pari L, Sankaranarayanan C (2009) Beneficial effects of thymoquinone on hepatic key enzymes in streptozotocin-nicotinamide induced diabetic rats. Life Sci 85(23–26):830–834

    Article  CAS  Google Scholar 

  38. de Castro UG, dos Santos RA, Silva ME, de Lima WG, Campagnole-Santos MJ, Alzamora AC (2013) Age-dependent effect of high-fructose and high-fat diets on lipid metabolism and lipid accumulation in liver and kidney of rats. Lipids Health Dis 12:136

    Article  Google Scholar 

  39. de Moura RF, Ribeiro C, de Oliveira JA, Stevanato E, de Mello MA (2009) Metabolic syndrome signs in Wistar rats submitted to different high-fructose ingestion protocols. Br J Nutr 101(8):1178–1184

    Article  Google Scholar 

  40. Pakdeechote P, Bunbupha S, Kukongviriyapan U, Prachaney P, Khrisanapant W, Kukongviriyapan V (2014) Asiatic acid alleviates hemodynamic and metabolic alterations via restoring eNOS/iNOS expression, oxidative stress, and inflammation in diet-induced metabolic syndrome rats. Nutrients 6(1):355–370

    Article  Google Scholar 

  41. Hokayem M, Blond E, Vidal H, Lambert K, Meugnier E, Feillet-Coudray C, Coudray C, Pesenti S, Luyton C, Lambert-Porcheron S, Sauvinet V, Fedou C, Brun JF, Rieusset J, Bisbal C, Sultan A, Mercier J, Goudable J, Dupuy AM, Cristol JP, Laville M, Avignon A (2013) Grape polyphenols prevent fructose-induced oxidative stress and insulin resistance in first-degree relatives of type 2 diabetic patients. Diabetes Care 36(6):1454–1461

    Article  CAS  Google Scholar 

  42. Yubero-Serrano EM, Delgado-Lista J, Peña-Orihuela P, Perez-Martinez P, Fuentes F, Marin C, Tunez I, Tinahones FJ, Perez-Jimenez F, Roche HM, Lopez-Miranda J (2013) Oxidative stress is associated with the number of components of metabolic syndrome: LIPGENE study. Exp Mol Med 45:e28

    Article  Google Scholar 

  43. Vincent HK, Taylor AG (2006) Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int J Obes 30(3):400–418

    Article  CAS  Google Scholar 

  44. Al Wafai RJ (2013) Nigella sativa and thymoquinone suppress cyclooxygenase-2 and oxidative stress in pancreatic tissue of streptozotocin-induced diabetic rats. Pancreas 42(5):841–849

    Article  CAS  Google Scholar 

  45. Kim JH, Baik HW, Yoon YS, Joung HJ, Park JS, Park SJ, Jang EJ, Park SW, Kim SJ, Kim MJ, Jeon DO, Cho HJ, Lee SJ, Im SG, Jang SK (2014) Measurement of antioxidant capacity using the biological antioxidant potential test and its role as a predictive marker of metabolic syndrome. Korean J Intern Med 29(1):31–39

    Article  CAS  Google Scholar 

  46. Giriş M, Dogru-Abbasoglu S, Kumral A, Olgaç V, Koçak-Toker N, Uysal M (2014) Effect of carnosine alone or combined with α-tocopherol on hepatic steatosis and oxidative stress in fructose-induced insulin-resistant rats. J Physiol Biochem 70(2):385–395

    Article  Google Scholar 

  47. Badary OA, Taha RA, Gamal el-Din AM, Abdel-Wahab MH (2003) Thymoquinone is a potent superoxide anion scavenger. Drug Chem Toxicol 26(2):87–98

    Article  CAS  Google Scholar 

  48. Gumieniczek A (2005) Modification of oxidative stress by pioglitazone in the heart of alloxan-induced diabetic rabbits. J Biomed Sci 12(3):531–537

    Article  CAS  Google Scholar 

  49. Mostarda C, Moraes-Silva IC, Salemi VM, Machi JF, Rodrigues B, De Angelis K, Vde Farah M, Irigoyen MC (2012) Exercise training prevents diastolic dysfunction induced by metabolic syndrome in rats. Clinics 67(7):815–820

    Article  Google Scholar 

  50. Penicaud L, Berthault MF, Morin J, Dubar M, Ktorza A, Ferre P (1998) Rilmenidine normalizes fructose-induced insulin resistance and hypertension in rats. J Hypertens Suppl 16(3):S45–S49

    CAS  Google Scholar 

  51. Tran LT, MacLeod KM, McNeill JH (2009) Chronic etanercept treatment prevents the development of hypertension in fructose-fed rats. Mol Cell Biochem 330:219–228

    Article  CAS  Google Scholar 

  52. Kobayashi R, Nagano M, Nakamura F, Higaki J, Fujioka Y, Ikegami H, Mikami H, Kawaguchi N, Onishi S, Ogihara T (1993) Role of angiotensin II in high fructose-induced left ventricular hypertrophy in rats. Hypertension 21:1051–1055

    Article  CAS  Google Scholar 

  53. DeFronzo RA (1981) The effect of insulin on renal sodium metabolism.A review with clinical implications. Diabetologia 21(3):165–171

    Article  CAS  Google Scholar 

  54. Katakam PV, Ujhelyi MR, Hoenig ME, Miller AW (1998) Endothelial dysfunction precedes hypertension in diet-induced insulin resistance. Am J Physiol 275(3):R788–R792

    CAS  Google Scholar 

  55. Khattab MM, Nagi MN (2007) Thymoquinone supplementation attenuates hypertension and renal damage in nitric oxide deficient hypertensive rats. Phytother Res 21(5):410–414

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the Indian Council of Medical Research (ICMR), New Delhi, India, for financial support.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Reeta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhakar, P., Reeta, K.H., Maulik, S.K. et al. Protective effect of thymoquinone against high-fructose diet-induced metabolic syndrome in rats. Eur J Nutr 54, 1117–1127 (2015). https://doi.org/10.1007/s00394-014-0788-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0788-7

Keywords

Navigation