European Journal of Nutrition

, Volume 54, Issue 2, pp 173–181 | Cite as

Changes in the serum metabolite profile in obese children with weight loss

  • Thomas Reinehr
  • Barbara Wolters
  • Caroline Knop
  • Nina Lass
  • Christian Hellmuth
  • Ulrike Harder
  • Wolfgang Peissner
  • Simone Wahl
  • Harald Grallert
  • Jerzy Adamski
  • Thomas Illig
  • Cornelia Prehn
  • Zhonghao Yu
  • Rui Wang-Sattler
  • Berthold Koletzko
Original Contribution

Abstract

Purpose

Childhood obesity is an increasing problem and is accompanied by metabolic disturbances. Recently, we have identified 14 serum metabolites by a metabolomics approach (FIA-MS/MS), which showed altered concentrations in obese children as compared to normal-weight children. Obese children demonstrated higher concentrations of two acylcarnitines and lower levels of three amino acids, six acyl–alkyl phosphatidylcholines, and three lysophosphatidylcholines. The aim of this study was to analyze whether these alterations normalize in weight loss.

Methods

We analyzed the changes of these 14 metabolites by the same metabolic kit as in our previous study in serum samples of 80 obese children with substantial weight loss (BMI-SDS reduction >0.5) and in 80 obese children with stable weight status all participating in a 1-year lifestyle intervention.

Results

In the children without weight change, no significant changes of metabolite concentrations could be observed. In children with substantial weight loss, glutamine, methionine, the lysophosphatidylcholines LPCaC18:1, LPCaC18:2, and LPCa20:4, as well as the acyl–alkyl phosphatidylcholine PCaeC36:2 increased significantly, while the acylcarnitines C12:1 and C16:1, proline, PCaeC34:1, PCaeC34:2, PCaeC34:3, PCaeC36:3, and PCaeC38:2 did not change significantly.

Conclusions

The changes of glutamine, methionine, LPCaC18:1, LPCaC18:2, LPCa20:4, and PCaeC36:2 seem to be related to the changes of dieting or exercise habits in lifestyle intervention or to be a consequence of overweight since they normalized in weight loss. Further studies should substantiate our findings.

Keywords

Obesity Childhood Metabolomics Metabolite profile Weight loss Lifestyle intervention 

Supplementary material

394_2014_698_MOESM1_ESM.pdf (26 kb)
Supplementary material 1 (PDF 26 kb)
394_2014_698_MOESM2_ESM.docx (35 kb)
Supplementary material 2 (DOCX 35 kb)

References

  1. 1.
    Han JC, Lawlor DA, Kimm SY (2010) Childhood obesity. Lancet 375:1737–1748CrossRefGoogle Scholar
  2. 2.
    Vinayavekhin N, Homan EA, Saghatelian A (2010) Exploring disease through metabolomics. ACS Chem Biol 5:91–103CrossRefGoogle Scholar
  3. 3.
    Wang-Sattler R, Yu Y, Mittelstrass K et al (2008) Metabolic profiling reveals distinct variations linked to nicotine consumption in humans—first results from the KORA study. PLoS ONE 3:e3863CrossRefGoogle Scholar
  4. 4.
    Wahl S, Yu Z, Kleber M et al (2012) Childhood obesity is associated with changes in the serum metabolite profile. Obes Facts 5:660–670CrossRefGoogle Scholar
  5. 5.
    Ma J, Folsom AR, Shahar E, Eckfeldt JH (1995) Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Am J Clin Nutr 62:564–571Google Scholar
  6. 6.
    Plaisance EP, Greenway FL, Boudreau A et al (2011) Dietary methionine restriction increases fat oxidation in obese adults with metabolic syndrome. J Clin Endocrinol Metab 96:E836–E840CrossRefGoogle Scholar
  7. 7.
    Reinehr T, Hinney A, de Sousa G, Austrup F, Hebebrand J, Andler W (2007) Definable somatic disorders in overweight children and adolescents. J Pediatr 150:618–622CrossRefGoogle Scholar
  8. 8.
    Reinehr T, Andler W (2004) Cortisol and its relation to insulin resistance before and after weight loss in obese children. Horm Res 62:107–112CrossRefGoogle Scholar
  9. 9.
    Reinehr T, Kratzsch J, Kiess W, Andler W (2005) Circulating soluble leptin receptor, leptin, and insulin resistance before and after weight loss in obese children. Int J Obes (Lond) 29:1230–1235CrossRefGoogle Scholar
  10. 10.
    Reinehr T, Andler W (2004) Changes in the atherogenic risk factor profile according to degree of weight loss. Arch Dis Child 89:419–422CrossRefGoogle Scholar
  11. 11.
    Reinehr T, de Sousa G, Toschke AM, Andler W (2006) Long-term follow-up of cardiovascular disease risk factors in children after an obesity intervention. Am J Clin Nutr 84:490–496Google Scholar
  12. 12.
    Reinehr T, Dobe M, Kersting M (2010) Therapie der Adipositas im Kindes—und Jugendalter: Schulung Obeldicks und Obeldicks Light. 2. Auflage ed. Hogrefe VerlagGoogle Scholar
  13. 13.
    Reinehr T, Roth CL, Alexy U, Kersting M, Kiess W, Andler W (2005) Ghrelin levels before and after reduction of overweight due to a low-fat high-carbohydrate diet in obese children and adolescents. Int J Obes (Lond) 29:362–368CrossRefGoogle Scholar
  14. 14.
    Reinehr T, Schaefer A, Winkel K, Finne E, Toschke AM, Kolip P (2010) An effective lifestyle intervention in overweight children: findings from a randomized controlled trial on “Obeldicks light”. Clin Nutr 29:331–336CrossRefGoogle Scholar
  15. 15.
    Cole TJ (1990) The LMS method for constructing normalized growth standards. Eur J Clin Nutr 44:45–60Google Scholar
  16. 16.
    Kromeyer-Hauschild K, Wabitsch M, Geller F et al (2001) Percentiles of body mass index in children and adolescents evaluated from different regional German studies. Monatsschr Kinderheilkd 149:807–818CrossRefGoogle Scholar
  17. 17.
    Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243CrossRefGoogle Scholar
  18. 18.
    Slaughter M, Lohmann T, Boileau R, Horswill C, Stillmann R, Bemben D (1998) Skinfold equations for estimation of body fatness in children and youth. Hum Biol 60:709–723Google Scholar
  19. 19.
    Floegel A, Drogan D, Wang-Sattler R et al (2011) Reliability of serum metabolite concentrations over a 4-month period using a targeted metabolomic approach. PLoS ONE 6:e21103CrossRefGoogle Scholar
  20. 20.
    Illig T, Gieger C, Zhai G et al (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42:137–141CrossRefGoogle Scholar
  21. 21.
    Obici S, Wang J, Chowdury R et al (2002) Identification of a biochemical link between energy intake and energy expenditure. J Clin Invest 109:1599–1605CrossRefGoogle Scholar
  22. 22.
    Tremblay F, Lavigne C, Jacques H, Marette A (2007) Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu Rev Nutr 27:293–310CrossRefGoogle Scholar
  23. 23.
    Daniels MC, Ciaraldi TP, Nikoulina S, Henry RR, McClain DA (1996) Glutamine:fructose-6-phosphate amidotransferase activity in cultured human skeletal muscle cells: relationship to glucose disposal rate in control and non-insulin-dependent diabetes mellitus subjects and regulation by glucose and insulin. J Clin Invest 97:1235–1241CrossRefGoogle Scholar
  24. 24.
    Rubio-Aliaga I, Roos B, Sailer M et al (2011) Alterations in hepatic one-carbon metabolism and related pathways following a high-fat dietary intervention. Physiol Genomics 43:408–416CrossRefGoogle Scholar
  25. 25.
    Serkova NJ, Jackman M, Brown JL et al (2006) Metabolic profiling of livers and blood from obese Zucker rats. J Hepatol 44:956–962CrossRefGoogle Scholar
  26. 26.
    Adams SH (2011) Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv Nutr 2:445–456CrossRefGoogle Scholar
  27. 27.
    Wahl S, Holzapfel C, Yu Z et al. (2013) Metabolic predictors of overweight reduction during lifestyle intervention in obese children. Metabolomics in pressGoogle Scholar
  28. 28.
    Pathmasiri W, Pratt KCD, Lutes L, McRitchie S, Sumner SCJ (2012) Integrating metabolomic signatures and psychosocial parameters in responsivity to an immersion treatment model for adolescent obesity. Metabolomics 8:1037–1051CrossRefGoogle Scholar
  29. 29.
    Koletzko B, Dokoupil K, Reitmayr S, Weimert-Harendza B, Keller E (2000) Dietary fat intakes in infants and primary school children in Germany. Am J Clin Nutr 72(Suppl):1392S–1398SGoogle Scholar
  30. 30.
    Reinehr T, Roth C, Menke T, Andler W (2004) Adiponectin before and after weight loss in obese children. J Clin Endocrinol Metab 89:3790–3794CrossRefGoogle Scholar
  31. 31.
    Oberbach A, von Bergen M, Bluher S, Lehmann S, Till H (2012) Combined serum proteomic and metabonomic profiling after laparoscopic sleeve gastrectomy in children and adolescents. J Laparoendosc Adv Surg Tech A 22:184–188CrossRefGoogle Scholar
  32. 32.
    Reinehr T (2013) Lifestyle intervention in childhood obesity: changes and challenges. Nat Rev Endocrinol 9:607–614CrossRefGoogle Scholar
  33. 33.
    Sichert-Hellert W, Kersting M, Schoch G (1998) Underreporting of energy intake in 1 to 18 year old German children and adolescents. Z Ernahrungswiss 37:242–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Reinehr
    • 1
  • Barbara Wolters
    • 1
  • Caroline Knop
    • 1
  • Nina Lass
    • 1
  • Christian Hellmuth
    • 2
  • Ulrike Harder
    • 2
  • Wolfgang Peissner
    • 2
  • Simone Wahl
    • 3
    • 4
  • Harald Grallert
    • 3
    • 4
  • Jerzy Adamski
    • 4
    • 5
  • Thomas Illig
    • 3
    • 6
  • Cornelia Prehn
    • 5
  • Zhonghao Yu
    • 3
  • Rui Wang-Sattler
    • 3
  • Berthold Koletzko
    • 2
  1. 1.Department of Pediatric Endocrinology, Diabetes, and Nutrition Medicine, Vestische Hospital for Children and AdolescentsUniversity of Witten/HerdeckeDattelnGermany
  2. 2.Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s HospitalUniversity of Munich Medical CenterMunichGermany
  3. 3.Research Unit of Molecular EpidemiologyHelmholtz Zentrum München – German Research Center for Environmental HealthNeuherbergGermany
  4. 4.German Center for Diabetes Research (DZD)NeuherbergGermany
  5. 5.Institute of Experimental Genetics, Genome Analysis CenterHelmholtz Zentrum München – German Research Center for Environmental HealthNeuherbergGermany
  6. 6.Medical School HanoverHannover Unified BiobankHanoverGermany

Personalised recommendations