Advertisement

European Journal of Nutrition

, Volume 53, Issue 7, pp 1503–1510 | Cite as

Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet

  • João Marcus Oliveira Andrade
  • Alessandra Caroline Montes Frade
  • Juliana Bohnen Guimarães
  • Kátia Michelle Freitas
  • Miriam Teresa Paz Lopes
  • André Luiz Sena Guimarães
  • Alfredo Maurício Batista de Paula
  • Cândido Celso Coimbra
  • Sérgio Henrique Sousa SantosEmail author
Original Contribution

Abstract

Purpose

Adipose tissue is central to the regulation of energy balance. Two functionally different fat pads are present in mammals: white adipose tissue, the primary site of triglyceride storage, and brown adipose tissue (BAT), which is specialized in heat production. In this context, new strategies capable of modulating the development and function of white and BAT become relevant. In the present study, we analyzed the influence of resveratrol (sirtuin activator) on energy balance and the expression of thermogenesis markers.

Methods

Mice were divided into two groups: standard diet (ST) and standard diet plus resveratrol (ST + RSV).

Results

After 2 months of treatment, ST + RSV mice presented significantly decreased fat accumulation in adipose tissue, with diminished total cholesterol and glucose plasma levels. Additionally, increased oxygen consumption was observed in ST + RSV group. Analyses of mRNA of thermogenesis-related genes showed significant increase in UCP1, SIRT1, PTEN and BMP-7 expression in BAT.

Conclusion

Our data suggest that improved metabolism produced by oral administration of resveratrol is, at least in part, associated with increased thermogenesis followed by high expression of UCP1 and SIRT1, which can mediate higher energy expenditure and decreased fat accumulation in adipose tissue.

Keywords

Thermogenesis PTEN Adipose tissue SIRT1 UCP1 

Notes

Acknowledgments

This work was partially supported by the Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq) and Minas Gerais State Foundation for Research Development (FAPEMIG).

Conflict of interest

There is no conflict of interest to disclose for any of the authors.

References

  1. 1.
    Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131(2):242–256. doi: 10.1016/j.cell.2007.10.004 CrossRefGoogle Scholar
  2. 2.
    Del Gonzalez-BarrosoM M, Ricquier D, Cassard-Doulcier AM (2000) The human uncoupling protein-1 gene (UCP1): present status and perspectives in obesity research. Obes Rev 1(2):61–72CrossRefGoogle Scholar
  3. 3.
    Alberdi G, Rodriguez VM, Miranda J, Macarulla MT, Churruca I, Portillo MP (2013) Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem 141(2):1530–1535. doi: 10.1016/j.foodchem.2013.03.085 CrossRefGoogle Scholar
  4. 4.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342. doi: 10.1038/nature05354 CrossRefGoogle Scholar
  5. 5.
    Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506. doi: 10.1038/nrd2060 CrossRefGoogle Scholar
  6. 6.
    Carafa V, Nebbioso A, Altucci L (2012) Sirtuins and disease: the road ahead. Front Pharmacol 3:4. doi: 10.3389/fphar.2012.00004 CrossRefGoogle Scholar
  7. 7.
    Lavu S, Boss O, Elliott PJ, Lambert PD (2008) Sirtuins–novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov 7(10):841–853. doi: 10.1038/nrd2665 CrossRefGoogle Scholar
  8. 8.
    Alberdi G, Rodriguez VM, Miranda J, Macarulla MT, Arias N, Andres-Lacueva C, Portillo MP (2011) Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutr Metab (Lond) 8(1):29. doi: 10.1186/1743-7075-8-29 CrossRefGoogle Scholar
  9. 9.
    Kim S, Jin Y, Choi Y, Park T (2011) Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 81(11):1343–1351. doi: 10.1016/j.bcp.2011.03.012 CrossRefGoogle Scholar
  10. 10.
    Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, Rosenbaum M, Zhao Y, Gu W, Farmer SR, Accili D (2012) Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 150(3):620–632. doi: 10.1016/j.cell.2012.06.027 CrossRefGoogle Scholar
  11. 11.
    Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060. doi: 10.1038/nature07813 CrossRefGoogle Scholar
  12. 12.
    Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450(7170):712–716. doi: 10.1038/nature06261 CrossRefGoogle Scholar
  13. 13.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122. doi: 10.1016/j.cell.2006.11.013 CrossRefGoogle Scholar
  14. 14.
    de Pinho L, Andrade JM, Paraiso A, Filho AB, Feltenberger JD, Guimaraes AL, de Paula AM, Caldeira AP, Botelho AC, Campagnole-Santos MJ, Santos SH (2013) Diet composition modulate expression of sirtuins and renin-angiotensin system components in adipose tissue. Obesity. doi: 10.1002/oby.20305 Google Scholar
  15. 15.
    Feltenberger JD, Andrade JM, Paraiso A, Barros LO, Filho AB, Sinisterra RD, Sousa FB, Guimaraes AL, de Paula AM, Campagnole-Santos MJ, Qureshi M, Dos Santos RA, Santos SH (2013) Oral formulation of angiotensin-(1–7) improves lipid metabolism and prevents high-fat diet-induced hepatic steatosis and inflammation in mice. Hypertension. doi: 10.1161/HYPERTENSIONAHA.111.00919 Google Scholar
  16. 16.
    Leite LH, Lacerda AC, Balthazar CH, Marubayashi U, Coimbra CC (2007) Central AT(1) receptor blockade increases metabolic cost during exercise reducing mechanical efficiency and running performance in rats. Neuropeptides 41(3):189–194. doi: 10.1016/j.npep.2007.01.002 CrossRefGoogle Scholar
  17. 17.
    Guimaraes JB, Wanner SP, Machado SC, Lima MR, Cordeiro LM, Pires W, La Guardia RB, Silami-Garcia E, Rodrigues LO, Lima NR (2013) Fatigue is mediated by cholinoceptors within the ventromedial hypothalamus independent of changes in core temperature. Scand J Med Sci Sports 23(1):46–56. doi: 10.1111/j.1600-0838.2011.01350.x CrossRefGoogle Scholar
  18. 18.
    de Queiroz KB, Rodovalho GV, Guimaraes JB, de Lima DC, Coimbra CC, Evangelista EA, Guerra-Sa R (2012) Endurance training blocks uncoupling protein 1 up-regulation in brown adipose tissue while increasing uncoupling protein 3 in the muscle tissue of rats fed with a high-sugar diet. Nutr Res 32(9):709–717. doi: 10.1016/j.nutres.2012.06.020 CrossRefGoogle Scholar
  19. 19.
    Saely CH, Geiger K, Drexel H (2012) Brown versus white adipose tissue: a mini-review. Gerontology 58(1):15–23. doi: 10.1159/000321319 CrossRefGoogle Scholar
  20. 20.
    Bjorndal B, Burri L, Staalesen V, Skorve J, Berge RK (2011) Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes 2011:490650. doi: 10.1155/2011/490650 CrossRefGoogle Scholar
  21. 21.
    Caesar R, Manieri M, Kelder T, Boekschoten M, Evelo C, Muller M, Kooistra T, Cinti S, Kleemann R, Drevon CA (2010) A combined transcriptomics and lipidomics analysis of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences. PLoS ONE 5(7):e11525. doi: 10.1371/journal.pone.0011525 CrossRefGoogle Scholar
  22. 22.
    DiGirolamo M, Fine JB, Tagra K, Rossmanith R (1998) Qualitative regional differences in adipose tissue growth and cellularity in male Wistar rats fed ad libitum. Am J Physiol 274(5 Pt 2):R1460–R1467Google Scholar
  23. 23.
    Norheim F, Langleite TM, Hjorth M, Holen T, Kielland A, Stadheim HK, Gulseth HL, Birkeland KI, Jensen J, Drevon CA (2013) The effects of acute and chronic exercise on PGC-1alpha, irisin and browning of subcutaneous adipose tissue in humans. FEBS J. doi: 10.1111/febs.12619 Google Scholar
  24. 24.
    Bartelt A, Heeren J (2014) Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10(1):24–36. doi: 10.1038/nrendo.2013.204 CrossRefGoogle Scholar
  25. 25.
    Giralt M, Villarroya F (2013) White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154(9):2992–3000. doi: 10.1210/en.2013-1403 CrossRefGoogle Scholar
  26. 26.
    Liu X, Rossmeisl M, McClaine J, Riachi M, Harper ME, Kozak LP (2003) Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J Clin Investig 111(3):399–407. doi: 10.1172/JCI15737 CrossRefGoogle Scholar
  27. 27.
    Hamann A, Flier JS, Lowell BB (1996) Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology 137(1):21–29Google Scholar
  28. 28.
    Okamatsu-Ogura Y, Nio-Kobayashi J, Iwanaga T, Terao A, Kimura K, Saito M (2011) Possible involvement of uncoupling protein 1 in appetite control by leptin. Exp Biol Med 236(11):1274–1281. doi: 10.1258/ebm.2011.011143 CrossRefGoogle Scholar
  29. 29.
    Oh HH, Kim KS, Choi SM, Yang HS, Yoon Y (2004) The effects of uncoupling protein-1 genotype on lipoprotein cholesterol level in Korean obese subjects. Metab Clin Exp 53(8):1054–1059CrossRefGoogle Scholar
  30. 30.
    Sale MM, Hsu FC, Palmer ND, Gordon CJ, Keene KL, Borgerink HM, Sharma AJ, Bergman RN, Taylor KD, Saad MF, Norris JM (2007) The uncoupling protein 1 gene, UCP1, is expressed in mammalian islet cells and associated with acute insulin response to glucose in African American families from the IRAS Family Study. BMC Endocr Disord 7:1. doi: 10.1186/1472-6823-7-1 CrossRefGoogle Scholar
  31. 31.
    Proenza AM, Poissonnet CM, Ozata M, Ozen S, Guran S, Palou A, Strosberg AD (2000) Association of sets of alleles of genes encoding beta3-adrenoreceptor, uncoupling protein 1 and lipoprotein lipase with increased risk of metabolic complications in obesity. Int J Obes Relat Metab Disord J Int Assoc Study Obes 24(1):93–100CrossRefGoogle Scholar
  32. 32.
    Shin HD, Kim KS, Cha MH, Yoon Y (2005) The effects of UCP-1 polymorphisms on obesity phenotypes among Korean female subjects. Biochem Biophys Res Commun 335(2):624–630. doi: 10.1016/j.bbrc.2005.07.096 CrossRefGoogle Scholar
  33. 33.
    Jia JJ, Tian YB, Cao ZH, Tao LL, Zhang X, Gao SZ, Ge CR, Lin QY, Jois M (2010) The polymorphisms of UCP1 genes associated with fat metabolism, obesity and diabetes. Mol Biol Rep 37(3):1513–1522. doi: 10.1007/s11033-009-9550-2 CrossRefGoogle Scholar
  34. 34.
    Kozak LP, Harper ME (2000) Mitochondrial uncoupling proteins in energy expenditure. Annu Rev Nutr 20:339–363. doi: 10.1146/annurev.nutr.20.1.339 CrossRefGoogle Scholar
  35. 35.
    Lanouette CM, Giacobino JP, Perusse L, Lacaille M, Yvon C, Chagnon M, Kuhne F, Bouchard C, Muzzin P, Chagnon YC (2001) Association between uncoupling protein 3 gene and obesity-related phenotypes in the Quebec Family Study. Mol Med 7(7):433–441Google Scholar
  36. 36.
    Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124. doi: 10.1016/S0092-8674(00)80611-X CrossRefGoogle Scholar
  37. 37.
    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118. doi: 10.1038/nature03354 CrossRefGoogle Scholar
  38. 38.
    Ortega-Molina A, Efeyan A, Lopez-Guadamillas E, Munoz-Martin M, Gomez-Lopez G, Canamero M, Mulero F, Pastor J, Martinez S, Romanos E, Mar Gonzalez-Barroso M, Rial E, Valverde AM, Bischoff JR, Serrano M (2012) Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab 15(3):382–394. doi: 10.1016/j.cmet.2012.02.001 CrossRefGoogle Scholar
  39. 39.
    Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454(7207):1000–1004. doi: 10.1038/nature07221 CrossRefGoogle Scholar
  40. 40.
    Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6(1):38–54. doi: 10.1016/j.cmet.2007.06.001 CrossRefGoogle Scholar
  41. 41.
    Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839CrossRefGoogle Scholar
  42. 42.
    Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, Cypess AM, Mishina Y, Gussoni E, Tseng YH (2013) Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495(7441):379–383. doi: 10.1038/nature11943 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • João Marcus Oliveira Andrade
    • 3
  • Alessandra Caroline Montes Frade
    • 1
  • Juliana Bohnen Guimarães
    • 2
  • Kátia Michelle Freitas
    • 1
  • Miriam Teresa Paz Lopes
    • 1
  • André Luiz Sena Guimarães
    • 3
  • Alfredo Maurício Batista de Paula
    • 3
  • Cândido Celso Coimbra
    • 2
  • Sérgio Henrique Sousa Santos
    • 1
    • 3
    • 4
    Email author
  1. 1.Pharmacology Department, Biological Sciences InstituteFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Physiology and Biophysics Department, Biological Sciences InstituteFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  3. 3.Laboratory of Health Science, Postgraduate Program in Health SciencesUniversidade Estadual de Montes Claros (UNIMONTES)Montes ClarosBrazil
  4. 4.Departamento de FarmacologiaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations